Products
Laser Beam Steering
Lasers
Controllers & Software
Sub-systems
Applications
Laser Material Processing
Digital Converting
Precision Laser Processing
Metrology/Inspection
Laser Marking and Coding
Medical
Scientific/Research & Development
Application & Material Testing
Industries
Manufacturing & Processing
Converting, Packaging, & Labeling
Energy
Medical
Scientific Research & Development
Capabilities
Engineered Solutions for Specific Applications
Application & Material Testing
Technologies
Resources
Tools
Announcements & Updates
Application Notes
Articles & Whitepapers
Blog
Brochures
Documentation
Legal & Certifications
Success Stories
Videos
Support
Customer Service
FAQ
About
News
Events
Certifications
Customer Service
Corporate Citizenship
Careers
Contact Us
Products
Novanta Photonics Products
Whitepaper Download
Laser Remote Cutting of Anode Battery Foil: Laser Setup Comparison
Whitepaper Download
Challenges of CO2 Laser and Scan Head Subsystem Integration
Laser Beam Steering
Components
2-Axis Scan Heads
3-Axis Scan Heads
Multi-Axis Scan Heads
Polygon Scanning
Lasers
C02 Lasers
Solid State Lasers
Ultrafast Lasers
CO2 Laser Accessories
Controllers & Software
Controllers
Software
Sub-Systems
Applications
Novanta Photonics Applications
Solutions for Li-Ion battery manufacturing
Ultra-high precision drilling solutions
Material Processing
Additive Manufacturing
Laser Ablation
Laser Cutting
Laser Drilling & Trepanning
Laser Marking & Engraving
Laser Perforating
Laser Scoring/Scribing
Laser Welding
Digital Converting
Laser Cutting
Laser Marking & Coding
Laser Perforating & Drilling
Laser Scoring
Marking & Coding
Character Marking
Graphical Marking
Machine Readable Marking
Ultrafast Marking
Medical
DNA Sequencing
Flow Cytometry & Cell Sorting
Fractional Skin Resurfacing
Microscopy
Ophthalmology
Optogenetics
Precision Processing
Drilling
Glass Processing
Laser Marking & Coding
Material Removal (Ablation)
Micromachining
Passive Emitter Rear Contact (PERC)
Probe Card Drilling
Selective Laser Sintering (SLS) and Melting (SLM)
Stereolithography (SLA)
Surface Modification
Thin Film Processing
Trepanning
Via Hole Drilling (VHD)
Scientific/Research & Development
Amplifier Seeding
Carrier Envelope Phase (CEP) Stabilization
Coherent Anti-Stokes Raman Scattering (CARS)
Interferometry
Lithography
Metrology & Frequency Combs
Optical Tweezers
Raman Spectroscopy
Terahertz Spectroscopy
Ti: Sapphire Pumping
Time-Domain Spectroscopy/ASOPS
Industries
Novanta Photonics Industries
Lean how lasers help eMobility
Laser beam delivery solutions for Additive Manufacturing
Manufacturing & Processing
3D Printing
Aerospace
Automotive
Consumer Electronics
eMobility
Food, Beverage & Pharmaceutical
Metrology
Optical Materials
Parts & Components
Semiconductor
Converting, Packaging & Labeling
Cardboard & Paperboard
Flexible Packaging
Labels
Plastics, Films & Foils
Textiles & Nonwovens
Energy
Battery
Solar
Medical
Cellular Imaging
Cosmetic
Dental
Laser Surgery
Microscopy
OCT
Photodynamic Therapy (PDT)
Scientific/Research & Development
Interferometry
Raman Spectroscopy
Ultrafast Research
English
Japanese
Home
/
Semiconductor Electronics Inspection
Semiconductor Electronics Inspection
Semiconductors need to be inspected for defects during every part of the manufacturing process. Accurate and precise results are critical in order to prevent unnecessary product wastage and cost to the manufacturer. Many of the inspection processes associated with electronics inspection utilise lasers, due to the inherent levels of measurement precision and resolution that these inspection applications demand. Whilst the measurement and inspection value of laser based technology is unsurpassed, deploying such technology often presents a number of key challenges for the manufacturer. Requirement for reliable, long-lifetime lasers Maintenance free Passive, water-free cooling Unique laser speckle patterns Exceptional beam quality Zero laser power fluctuations Requirement to image smaller features
What is Electronic Inspection?
Electronic inspection involves the detailed examination of critical components for surface defects or identifying marks. This technique is particularly prevalent in silicon wafer manufacturing, where the wafers are used in the manufacture of semiconductor microchips. Detailed inspection should be performed to ensure that the manufactured product meets specification at each stage of the semiconductor wafer process. Inspection also identifies the smallest surface defects. The silicon wafer is inspected at least three times throughout the wafer manufacturing process for the manufacture of semiconductor microchips.
Read Full Whitepaper
×
×
×
×
×
×
×
×
×
×
×
×
×
×