Products
Laser Beam Steering
Lasers
Controllers & Software
Sub-systems
Applications
Laser Material Processing
Digital Converting
Precision Laser Processing
Metrology/Inspection
Laser Marking and Coding
Medical
Scientific/Research & Development
Application & Material Testing
Industries
Manufacturing & Processing
Converting, Packaging, & Labeling
Energy
Medical
Scientific Research & Development
Capabilities
Engineered Solutions for Specific Applications
Application & Material Testing
Technologies
Resources
Tools
Announcements & Updates
Application Notes
Articles & Whitepapers
Blog
Brochures
Documentation
Legal & Certifications
Success Stories
Videos
Support
Customer Service
FAQ
About
News
Events
Certifications
Customer Service
Corporate Citizenship
Careers
Contact Us
Products
Novanta Photonics Products
Whitepaper Download
Laser Remote Cutting of Anode Battery Foil: Laser Setup Comparison
Whitepaper Download
Challenges of CO2 Laser and Scan Head Subsystem Integration
Laser Beam Steering
Components
2-Axis Scan Heads
3-Axis Scan Heads
Multi-Axis Scan Heads
Polygon Scanning
Lasers
C02 Lasers
Solid State Lasers
Ultrafast Lasers
CO2 Laser Accessories
Controllers & Software
Controllers
Software
Sub-Systems
Applications
Novanta Photonics Applications
Solutions for Li-Ion battery manufacturing
Ultra-high precision drilling solutions
Material Processing
Additive Manufacturing
Laser Ablation
Laser Cutting
Laser Drilling & Trepanning
Laser Marking & Engraving
Laser Perforating
Laser Scoring/Scribing
Laser Welding
Digital Converting
Laser Cutting
Laser Marking & Coding
Laser Perforating & Drilling
Laser Scoring
Marking & Coding
Character Marking
Graphical Marking
Machine Readable Marking
Ultrafast Marking
Medical
DNA Sequencing
Flow Cytometry & Cell Sorting
Fractional Skin Resurfacing
Microscopy
Ophthalmology
Optogenetics
Precision Processing
Drilling
Glass Processing
Laser Marking & Coding
Material Removal (Ablation)
Micromachining
Passive Emitter Rear Contact (PERC)
Probe Card Drilling
Selective Laser Sintering (SLS) and Melting (SLM)
Stereolithography (SLA)
Surface Modification
Thin Film Processing
Trepanning
Via Hole Drilling (VHD)
Scientific/Research & Development
Amplifier Seeding
Carrier Envelope Phase (CEP) Stabilization
Coherent Anti-Stokes Raman Scattering (CARS)
Interferometry
Lithography
Metrology & Frequency Combs
Optical Tweezers
Raman Spectroscopy
Terahertz Spectroscopy
Ti: Sapphire Pumping
Time-Domain Spectroscopy/ASOPS
Industries
Novanta Photonics Industries
Lean how lasers help eMobility
Laser beam delivery solutions for Additive Manufacturing
Manufacturing & Processing
3D Printing
Aerospace
Automotive
Consumer Electronics
eMobility
Food, Beverage & Pharmaceutical
Metrology
Optical Materials
Parts & Components
Semiconductor
Converting, Packaging & Labeling
Cardboard & Paperboard
Flexible Packaging
Labels
Plastics, Films & Foils
Textiles & Nonwovens
Energy
Battery
Solar
Medical
Cellular Imaging
Cosmetic
Dental
Laser Surgery
Microscopy
OCT
Photodynamic Therapy (PDT)
Scientific/Research & Development
Interferometry
Raman Spectroscopy
Ultrafast Research
English
Japanese
Home
/
Alternative Wavelengths for CO
2
Lasers
Alternative Wavelengths for CO
2
Lasers
Every material has a characteristic absorption spectrum—that is, there are certain wavelengths of light that a given material absorbs more readily than others. Why does this matter? Lasers produce light at very specific wavelengths. By pairing that wavelength to a material that easily absorbs it, the application results are of higher quality and the processing itself is faster.
Laser Types
One of the defining characteristics of different laser types (including CO2, Fiber, YAG, UV, and many others) is their wavelength. CO2 lasers have long wavelengths, around 9.3 – 10.6 µm, with 10.6 µm as the most common. These wavelengths pair nicely with the absorption spectrum from polymers, ceramics, textiles, natural materials like paper or wood, and certain metals. By contrast, the shorter wavelength YAG or Fiber lasers tend to have better absorption in metals.
CO2 Laser Wavelengths
Once the type of laser has been chosen, there are options to optimize the alternative wavelengths for a specific material. CO2 lasers are typically available in three wavelengths: 9.3 µm, 10.2 µm, and 10.6 µm. Note that while the 10.2 and 9.3 µm wavelengths excel in processing certain materials, they are also capable of processing more common materials as well. If you plan to process a variety of materials, an Applications Engineer can help select the optimal wavelength for your needs
Read Full Whitepaper
×
×
×
×
×
×
×
×
×
×
×
×
×
×