Products
Laser Beam Steering
Lasers
Controllers & Software
Sub-systems
Applications
Laser Material Processing
Digital Converting
Precision Laser Processing
Metrology/Inspection
Laser Marking and Coding
Medical
Scientific/Research & Development
Application & Material Testing
Industries
Manufacturing & Processing
Converting, Packaging, & Labeling
Energy
Medical
Scientific Research & Development
Capabilities
Engineered Solutions for Specific Applications
Application & Material Testing
Technologies
Resources
Tools
Announcements & Updates
Application Notes
Articles & Whitepapers
Blog
Brochures
Documentation
Legal & Certifications
Success Stories
Videos
Support
Customer Service
FAQ
About
News
Events
Certifications
Customer Service
Corporate Citizenship
Careers
Contact Us
Products
Novanta Photonics Products
Shop Our USA Made Products
Laser Beam Steering
Components
2-Axis Scan Heads
3-Axis Scan Heads
Multi-Axis Scan Heads
Polygon Scanning
Lasers
C02 Lasers
Solid State Lasers
Ultrafast Lasers
CO2 Laser Accessories
Controllers & Software
Controllers
Software
Sub-Systems
Applications
Novanta Photonics Applications
Solutions for Li-Ion battery manufacturing
Ultra-high precision drilling solutions
Material Processing
Additive Manufacturing
Laser Ablation
Laser Cutting
Laser Drilling & Trepanning
Laser Marking & Engraving
Laser Perforating
Laser Scoring/Scribing
Laser Welding
Digital Converting
Laser Cutting
Laser Marking & Coding
Laser Perforating & Drilling
Laser Scoring
Marking & Coding
Character Marking
Graphical Marking
Machine Readable Marking
Ultrafast Marking
Medical
DNA Sequencing
Flow Cytometry & Cell Sorting
Fractional Skin Resurfacing
Microscopy
Ophthalmology
Optogenetics
Precision Processing
Drilling
Glass Processing
Laser Marking & Coding
Material Removal (Ablation)
Micromachining
Passive Emitter Rear Contact (PERC)
Probe Card Drilling
Selective Laser Sintering (SLS) and Melting (SLM)
Stereolithography (SLA)
Surface Modification
Thin Film Processing
Trepanning
Via Hole Drilling (VHD)
Scientific/Research & Development
Amplifier Seeding
Carrier Envelope Phase (CEP) Stabilization
Coherent Anti-Stokes Raman Scattering (CARS)
Interferometry
Lithography
Metrology & Frequency Combs
Optical Tweezers
Raman Spectroscopy
Terahertz Spectroscopy
Ti: Sapphire Pumping
Time-Domain Spectroscopy/ASOPS
Industries
Novanta Photonics Industries
Lean how lasers help eMobility
Laser beam delivery solutions for Additive Manufacturing
Manufacturing & Processing
3D Printing
Aerospace
Automotive
Consumer Electronics
eMobility
Food, Beverage & Pharmaceutical
Metrology
Optical Materials
Parts & Components
Semiconductor
Converting, Packaging & Labeling
Cardboard & Paperboard
Flexible Packaging
Labels
Plastics, Films & Foils
Textiles & Nonwovens
Energy
Battery
Solar
Medical
Cellular Imaging
Cosmetic
Dental
Laser Surgery
Microscopy
OCT
Photodynamic Therapy (PDT)
Scientific/Research & Development
Interferometry
Raman Spectroscopy
Ultrafast Research
English
Japanese
Home
/
Optimal Processing of Polypropylene Film
Optimal Processing of Polypropylene Films with CO
2
Lasers
Polypropylene, commonly abbreviated as PP, is one of the most common and important plastics used today. It is a thermoplastic that has practical applications in many different industries. Its strength, flexibility, and resistance to damage means polypropylene film is an excellent material for various types of storage and labeling applications. In addition, polypropylene has an ability to withstand heat. This, combined with chemical resistance to organic compounds, makes it a good choice in particular for food and beverage packaging. In recent years, the digital revolution has changed the landscape of the flex-packaging and labeling industries. This challenges manufacturers to meet demands for high design flexibility and shorter time to market. Digital laser converting provides the solution with on-the-fly customization, zero contact processing, and repeatable results. Synrad high performance CO2 lasers are ideally suited for many of these applications. This is due to our long wavelength’s superior absorption in many common film materials. In the specific case of polypropylene films, you can change the CO2 wavelength slightly from the standard 10.6 µm to more optimally absorb into that particular material. This can result in significant speed and process quality improvements.
Chemical Properties and Absorption Characteristics of PP
To efficiently use the laser energy in the process, the photons of the laser beam must be absorbed into the material rather than transmitted or reflected back. This leads to efficient vaporization of the material with little energy lost due to passing through the material, melting, or chemical degradation processes. When absorbing Infrared Radiation (IR), a polymer molecule’s chemical bonds will vibrate. These vibrations will stretch and bend the bonds within the polymer chain. However, for that absorption to occur, the energy level of the IR photons at a specific frequency must match the distinct vibrational energy differences within the molecule.
Read Full Whitepaper
×
×
×
×
×
×
×
×
×
×
×
×
×
×