R

SYNRAD PS-96 DC Power Supply (Arrow Electronics VAD611131)

With 3 each FXP1500-32G AC-DC Front-End Modules

AC Input
$3 Ø 105-264$ VAC (Recommended)
or 1Ø 208-264 VAC

AC Input Connections:

(See next page for AC connection details)

DC Output Connections:

* Tighten connections to no more than 35 in $\mathrm{lb}_{\mathrm{f}}(4.0 \mathrm{~N} \mathrm{~m})$
* Connect DC Positive (red wire) to Positive (+) 96 VDC terminal.
* Connect DC Return (black wire) to Negative (-) terminal.
* If required, connect DC Ground (green wire) to the screw at Chassis Ground.

Rev 6 / 10 Jan 2017
P/N 900-20173-01

Important Note: This supply requires a 4-wire (plus ground) AC input connection for either three-phase (3Ø) or single-phase (1Ø) operation.

AC Input Connections:

Three-phase (3Ø) RECOMMENDED

V = 105-264 VAC, 25 A, $3 \varnothing$ circuit ($230 \mathrm{~V} / 15$ A Nominal)

* Connect Phase 1 to input terminal labeled "L1/L".
* Connect Phase 2 to input terminals labeled "L2/L" and "L2/N".
* Connect Phase 3 to input terminal labeled "L3/N"
* Attach AC safety ground (earth) to terminal labeled "GND".

AC Input Connections:

One single-phase (1ø) circuit
$\mathrm{V}=$ one $208-264 \mathrm{VAC}, 30 \mathrm{~A}, 1 \varnothing$ circuit ($230 \mathrm{~V} / 20 \mathrm{~A}$ Nominal)

* Connect hot lead H1 to input terminal labeled "L1/L".
* Jumper input terminal "L1/L" to input terminal "L2/L".
* Connect hot lead H2 to input terminal labeled "L2/N".
* Jumper input terminal "L2/N" to input terminal "L3/N".
* The neutral (white) lead is not used.
* Attach AC safety ground (earth) to terminal labeled "GND".

AC Input Connections:

Two individual single-phase (1б) circuits
V1/V2 = two 120-264 VAC, 20 A, $1 \varnothing$ circuits ($120 \mathrm{~V} / 20$ A Nominal x2)

* Connect Hot lead H1 to input terminal labeled "L1/L".
* Connect Neutral lead N1 to input terminal labeled "L2/N"
* Connect Hot lead H2 to input terminal labeled "L2/L".
* Connect Neutral lead N2 to input terminal labeled "L3/N"
* Attach AC safety grounds (earth) to terminal labeled "GND".

BOTTOM VIEW

PS-96 12-Pin Molex Connector Pin Out

Pin \#	Signal Name	Description	Vmax Imax	Normal Operation	Fault Condition
1	V Sense + input ${ }^{1}$ (Upper connector)	Leave open or connect to $\mathrm{V}+$ at the load.	$\begin{aligned} & \mathrm{dV} \text { <3 Vpp } \\ & 30 \mathrm{~mA} \\ & \hline \end{aligned}$	n / a	n/a
2	V Sense - input ${ }^{2}$ (Lower connector)	Leave open or connect to V at the load.	$\begin{aligned} & \mathrm{dV}<3 \mathrm{Vpp} \\ & 30 \mathrm{~mA} \\ & \hline \end{aligned}$	n / a	n/a
3	DC Fail output ${ }^{3}$		$\begin{aligned} & 15 \mathrm{~V} \\ & 20 \mathrm{~mA} \\ & \hline \end{aligned}$	Low State $(<0.4 \mathrm{~V})$	High State (Pull Up)
4	Logic Ground	Logic Ground (return) for DC Fail, AC Fail, and Over Temp outputs.		n / a	n/a
5	AC Fail output ${ }^{3}$		$\begin{aligned} & 15 \mathrm{~V} \\ & 20 \mathrm{~mA} \\ & \hline \end{aligned}$	Low State $(<0.4 \mathrm{~V})$	High State (Pull Up)
6	Over Temp output ${ }^{4}$		$\begin{aligned} & 15 \mathrm{~V} \\ & 20 \mathrm{~mA} \\ & \hline \end{aligned}$	High State (Pull Up)	Low State $(<0.4 \mathrm{~V})$
7	Aux +5V output	Isolated +5 V output. Reference to Pin 10, Aux Ground.		n / a	n/a
8	n.c.				
9	n.c.				
10	Aux Ground	Isolated Aux Ground (return) for Aux +5 V output.		n / a	n/a
11	Output Inhibit input ${ }^{5}$	DC output enabled when open or pulled Low. Connect this input to Pin 7, Aux +5 V , to inhibit DC output.	$\begin{aligned} & 10 \mathrm{~V} \\ & 3.5 \mathrm{~mA} \end{aligned}$	n/a	n/a
12	n.c.				

Connection Notes:

Each of the three power supply modules has its own I/O connector.
1 Pin 1, upper connector. This pin is internally connected to $V+$ through 100 Ohm resistor.
2 Pin 2, lower connector. This pin is internally connected to V - through 100 Ohm resistor.
3 Module-specific output. Open-Collector output protected by 16 V Zener diode and 10 Ohm resistor in series. These output signals are pulled Low during normal operation and are floating during a fault condition. Use a user-supplied external 500 Ohm resistor to pull High to 5 V level for fault annunciation. Output rated for $15 \mathrm{~V}, 20 \mathrm{~mA}$ maximum.

4 Module-specific output. Open-Collector output protected by 16 V Zener diode and 10 Ohm resistor in series. This output signal is floating during normal operation and pulled Low during a fault condition. Use a user-supplied external 500 Ohm resistor to pull Low from 5 V level for fault annunciation. Output rated for $15 \mathrm{~V}, 20 \mathrm{~mA}$ maximum.

5 Module-specific input. DC output enabled when input open or pulled Low ($<0.8 \mathrm{~V}$). Connect this input to Pin 7 , Aux +5 V , to inhibit DC output (> 2.0 V). 2.5 mA of current will pull input High and disable DC output.

The mating connector for the 12-pin Molex connector is Molex 03-06-2122. The required contact pins are Molex 02-06-2103.

Applications

- Test \& measurement, RF amplifiers \& transmitters, factory automation, semiconductor \& LD-MOS based equipment, and other distributed power applications

Features

- 28 VDC, 32 VDC and 36 VDC output voltage preset via VID pins
- Margining via $I^{2} \mathrm{C}$
- Active current/load sharing
- Wide input voltage range 85-264 VAC
- Highly-efficient topology yields 89% at 230 VAC
- 1 U high: $5.6^{\prime \prime} \times 1.6^{\prime \prime} \times 12^{\prime \prime}$ cassette
- Input fuse protected
- $\quad I^{2} \mathrm{C}$ interface status and control
- High density design:13.4 W/in ${ }^{3}$
- Up to 4500 W in a 1 U -high, 19 -inch wide rack
- Standby voltage $5 \mathrm{VDC} / 1 \mathrm{~A}$
- Adjustable output voltage
- Overtemperature, output overvoltage, and output overcurrent protection
- ORing circuit for true redundant operation
- Status LEDs: AC OK, DC OK, Fan Fail/ Overtemperature Fail
- Auto select power limits ${ }^{1}$

The FXR-3-32G shelf provides capability to parallel up to three FXP1500-32G PSUs in a 19" rack, see rack section (below) for power shelf details.

Description

The FXP1500-32G is a 1500 watt, power factor corrected (PFC) front-end, which provides a user-adjustable 32 VDC ($26-38$ VDC range) main output for test \& measurement, RF amplifiers and transmitters, factory automation, semiconductor equipment, and other distributed power applications. The FXP1500-32G provides for true hot-swap with $A C$ and DC connections at the rear of the model and can be used for redundant system applications. Its very small dimensions allow configuration of up to three units in a 1 U rack (up to 4500 W). The highly-efficient thermal design with internal fan cooling permits its use in wide operating voltage and temperature ranges to provide very high reliability.
Status information is provided with front panel LEDs, logic signals, and via the $I^{2} C$ management interface. In addition, the $I^{2} C$ bus can enable the power supply, control the fan speed, adjust the output voltage, and set the output current limit.
The FXP1500-32G meets international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

Model Selection

Model	Input voltage VAC auto selected ${ }^{1}$	Output 1		Output 2		Rated power W
		$V_{\text {o nom }}$ VDC	$I_{0 \text { max }}$ ADC	$V_{\text {onom }}$ VDC	I_{0} max ADC	
FXP1500-32G	85-264	32	46.9	5	1	$1505{ }^{3}$

${ }^{1}$ The available output power is automatically adjusted depending on the input voltage.
${ }^{2} 1$ U standard rack FXR-3-32G for FXP1500-32G is available from Power-One.
${ }^{3}$ Automatic derating of main output below 108 VAC to: $I_{o \max }=37.5 \mathrm{~A}(1200 \mathrm{~W})$.

Absolute Maximum Ratings

Stress in excess of the absolute maximum ratings may cause performance degradation, adversely effect long-term reliability, or cause permanent damage to the converter.

Parameter	Conditions/description	Min	Max	Unit
Input voltage	Continuous Transient, 60 ms max.		$\begin{aligned} & 264 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \end{aligned}$
Operating ambient temperature	$V_{\mathrm{imin}}-V_{\mathrm{i} \text { max }}, I_{\text {onom }}$, cooling by internal fan 100% load from 0 to $50^{\circ} \mathrm{C}$ linear derating to 50% load from $50^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	0	70	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Storage temperature	Non-Operating	-40	85	${ }^{\circ} \mathrm{C}$

Environmental, Mechanical, \& Reliability Specifications

Parameter	Conditions/description	Min	Nom	Max	Unit
Altitude	Operating Non-Operating			$\begin{aligned} & 10 \mathrm{k} \\ & 40 \mathrm{k} \end{aligned}$	ASL Ft. ASL Ft.
Relative humidity, non-condensing	Operating	10		90	\% RH
	Storage	5		95	\% RH
Temperature coefficient	$0^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$ (after 15 min warm-up)			0.02	\%/K
Shock	IEC/EN 60068-2-27, 11 ms			40	g_{pk}
Sinusoidal vibration	$\begin{gathered} \text { IEC/EN } 60068-2-6 \\ 2-8 \mathrm{~Hz} \\ 8-200 \mathrm{~Hz} \\ 200-500 \mathrm{~Hz} \end{gathered}$		$\begin{gathered} 7.5 \\ 2 \\ 4 \end{gathered}$		$\begin{aligned} & \text { mil } \\ & g_{p k} \\ & g_{p k} \end{aligned}$
Random vibration	$10-2000 \mathrm{~Hz}$		6.15		g_{ms}
MTBF	```Calculated per Bellcore (SR-332, Issue 1): GB \(25^{\circ} \mathrm{C}\) Demonstrated```	$\begin{array}{r} 230 \\ 250 \\ \hline \end{array}$			$\begin{aligned} & \text { kh } \\ & \text { kh } \end{aligned}$

Safety Specifications

Maximum electric strength testing is performed in the factory according to EN 550116, IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Power-One will not honor any warranty claims resulting from electric strength field tests.

Parameter	Conditions/description	Min	Nom	Max	Unit
Agency approvals	UL60950, (UL) CSA 60950 (cUL), EN 60950(TÜV), CE Mark for LVD				
Insulation safety rating	Input to case Input to output Output to case	Basic Reinforced Functional			
Electric strength test voltage	Input to case Input to output Output to case Output 1 to output 2	$\begin{gathered} 2.12 \\ \text { Note } \\ 0.1 \\ 0.1 \end{gathered}$			kVDC kVDC kVDC kVDC

${ }^{1}$ Subassemblies are pre-tested with 4.2 kVDC in accordance with EN50116 and IEC/EN60950.

EMC Specification

Parameter	Description	Criterion
Electrostatic discharge	IEC/EN 61000-4-2, level 4 (contact/air)	8/15 kV, Performance criterion B
Electromagnetic field	IEC/EN 61000-4-3, level 3	$10 \mathrm{~V} / \mathrm{m}$, Performance criterion A
Electrical fast transients/burst	IEC/EN 61000-4-4, level 3 (L/L, L/E)	$2 / 1 \mathrm{kV}$, Performance criterion B
Surge	IEC/EN 61000-4-5, level 3 (L/L, L/E)	$1 / 2 \mathrm{kV}$, Performance criterion B
Voltage dips and interruptions	IEC/EN 61000-4-11 Dip 30%, 100 ms Dip $30 \%, 200 \mathrm{~ms}$ Dip $60 \%, \quad 20 \mathrm{~ms}$ Dip $60 \%, 100 \mathrm{~ms}$ Dip > $95 \%, 20 \mathrm{~ms}$ Dip > $95 \%, 100 \mathrm{~ms}$	Performance criterion A Performance criterion B Performance criterion A Performance criterion B Performance criterion A Performance criterion B
RF conducted immunity	IEC/EN 61000-4-6	10 VAC, AM $80 \%, 1$ kHz Performance criterion A
Emissions conducted	CISPR 22/EN 55022/EN 61204	Class B
Emissions radiated	CISPR 22/EN 55022/EN 61204	Class A
Harmonics	IEC/EN 61000-3-2	Class B
Voltage fluctuation and flicker	IEC/EN 61000-3-3	Pass
Voltage sag	SEMI F47-0200 (High Line 230V)	Pass

Input Specification

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

Parameter	Conditions/description	Min	Nom	Max	Unit
Input voltage		85	230	264	VAC
Input frequency		47	50/60	63	Hz
Turn-on input voltage	Ramping up	79	-	85	VAC
Turn-off input voltage	Ramping down	70	-	78	VAC
Inrush current limitation	$\text { 115/230 VAC acc. ETS } 300 \text { 132-1 }$ $<100 \mathrm{~ms}$			50	A_{pk}
Hold-up time	After last AC line peak, $V_{\mathrm{i}}=230 \mathrm{VAC}, P_{\text {o nom }}$	20			ms
Power factor	$V_{\text {i nom, }}, I_{\text {o nom }}$	0.95			W/VA
Efficiency	$V_{\mathrm{i}}=230 \mathrm{VAC}, V_{\text {o nom, }} I_{\text {o nom, }}, T_{c}=25^{\circ} \mathrm{C}$	89	89.5		\%
Max input current				20	$\mathrm{A}_{\text {rms }}$

Output Specification

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

Parameter	Conditions/Description	Min	Nom	Max	Units
Total output voltage range	Adjustable via T4, T5 pins \& ${ }^{2} \mathrm{C}$	26		38	VDC
Output voltage set point	Adjustable via T4, T5 pins (LL=28V, LH=HL=32V, HH=36V)		$\begin{aligned} & 28 \\ & 32 \\ & 36 \end{aligned}$		$\begin{aligned} & \hline \text { VDC } \\ & \text { VDC } \\ & \text { VDC } \end{aligned}$
Output voltage trimming	Adjustable via $I^{2} \mathrm{C}$ from any set point. Note: all changes to V_{01} made via $I^{2} C$ are volatile and are lost upon power cycling the PSU	-2		+2	VDC
Overvoltage protection latching	28 V set point 32 V set point 36 V set point		$\begin{aligned} & 35 \\ & 40 \\ & 45 \\ & \hline \end{aligned}$		VDC VDC VDC
Nominal current output 1	$\mathrm{I}_{\mathrm{ol} \text { nom }} @ \mathrm{~V}_{\mathrm{i}}=$ $105 \mathrm{VAC}-264 \mathrm{VAC}, \mathrm{P} \circ 1.5 \mathrm{~kW}$ 28 V set point 32 V set point 36 V set point		$\begin{array}{r} 46.9 \\ 46.9 \\ 41.7 \\ \\ 42.9 \\ 37.5 \\ 33.4 \end{array}$		ADC ADC ADC ADC ADC ADC
Nominal current output 2	l_{02} nom @ $\mathrm{Vi}=85 \mathrm{VAC}-265 \mathrm{VAC}, \mathrm{P}_{0} 5 \mathrm{~W}$		1.0		ADC
Current limit output 1	$\mathrm{I}_{01 \max } @ \mathrm{~V}_{\mathrm{i}}=105 \mathrm{VAC}-264 \mathrm{VAC}$ high droop hic-cup $\mathrm{I}_{01 \text { max }} @ \mathrm{~V}_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC}$ high droop hic-cup		$\begin{aligned} & 48.8 \\ & 50.8 \\ & 39.0 \\ & 41.0 \end{aligned}$		ADC ADC ADC ADC
Current limit output 2	$\mathrm{l}_{02 \text { max }} @ \mathrm{~V}_{\mathrm{i}}=85 \mathrm{VAC}-265 \mathrm{VAC}$		1.3		ADC
Static line regulation output 1	$\mathrm{V}_{\text {i min }}-\mathrm{V}_{\text {i max }}, 50 \% \mathrm{I}_{\text {onom }}$	-0.5		0.5	\% V ${ }_{\text {o nom }}$
Static load regulation output 1 (droop characteristic)	$\begin{gathered} V_{i}=230 \mathrm{~V}, 0-100 \% \mathrm{I}_{\mathrm{o}} \text { nom } \\ \mathrm{V}_{\mathrm{o}} \text { : full load (46.9 ADC) to no load } \end{gathered}$	$\begin{gathered} 31.68 \\ -1.0 \end{gathered}$	32	$\begin{gathered} 13.6 \\ 32.32 \\ +1.0 \\ \hline \end{gathered}$	
Dynamic load regulation	Load change $1 \% \leftrightarrow 100 \%$ lo nom, $\mathrm{dl}_{0} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$ Voltage deviation (droop + over- or undershoot) Max. recovery time to within 1% of V_{01} nom	-4		$\begin{gathered} +4 \\ 2000 \end{gathered}$	$\begin{gathered} \% \\ \hline V_{\text {o nom }} \\ \mu \mathrm{s} \end{gathered}$
Start-up time	Time required for output within regulation after initial application of AC-input ($\mathrm{V}_{\mathrm{i} \text { nom }}, \mathrm{I}_{\mathrm{onom}}$) after removal of inhibit $\quad\left(\mathrm{V}_{\mathrm{i} \text { nom }}, \mathrm{I}_{\text {onom }}\right)$		100	1.5	$\begin{gathered} \mathrm{s} \\ \mathrm{~ms} \\ \hline \end{gathered}$
Output voltage ripple and noise	$\mathrm{V}_{\text {i nom }}$, Io nom, 20 MHz bandwidth V_{01} V_{02}			$\begin{gathered} 320 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV}_{\mathrm{pp}} \\ & \mathrm{mV}_{\mathrm{pp}} \end{aligned}$
Remote sense	Total compensation for cable losses			500	mV
Active current share	Difference in current between two units for V_{01} above 10 \% load. Active current share pin with its $1 \mathrm{k} \Omega$ internal impedance enables control of output voltage. Voltage on this pin is proportional to output current, 2 V at $\mathrm{I}_{01 \text { nom }}$			5	ADC

Controls and Indicators

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

Parameter	Type ${ }^{\text {1 }}$	Conditions/Description
Visual Status Indication	FP	- DC OK (green) LED indicators ${ }^{2}:$ \bullet AC OK (green) Fan fail \& Over-temperature (amber)
I $^{2} \mathrm{C}$ communication bus	OC[S1, S2]	- Monitors alarm functions and allows control of specific parameters. - Uses standard Philips two wire bus (SCL and SDA signal lines)
${ }^{1}{ }^{2} \mathrm{C}$ communication bus addressing	OC[T1-T3]	Three lines provide up to 8 separate PSU ${ }^{2} \mathrm{C}$ addresses
PS present pin	OC[U3]	- Used by system to indicate a PSU is installed in a system shelf - Contact closure to logic ground (internal pull-down resistor of $1 \mathrm{k} \Omega$)
PS main output remote shutdown	OC[R1]	- TTL compatible signal, inhibited when open contact, high or at TTL logic "1" - Signal referenced to logic return (LRTN)
	FP	Two position switch in series with OC signal (logical AND) allows local enable/disable; "0" Position => PS disabled; "1" Position => PS Enabled
Power supply OK	$\mathrm{I}^{2} \mathrm{C}$	AC OK \& DC OK \& no overcurrent \& no over-temperature \& fans working
DC current fail	$1^{2} \mathrm{C}$	Reports over-current condition on main output, l_{01}
AC fail / Power down warning	$\begin{gathered} \mathrm{OC[U2]} \\ \& 1^{2} \mathrm{C} \end{gathered}$	Provides a warning that the input power has failed at least 5 ms before the output falls out of regulation ($<90 \% \mathrm{~V}_{01}$ set). - Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). - AC fail will go high or open during power fail condition and will go low when input is within the operating range. - A Power Fail warning will turn off the front panel green AC OK LED.
DC fail / Output voltage fault	$\begin{gathered} \mathrm{OC[U4]} \\ \& I^{2} \mathrm{C} \end{gathered}$	Internal under-voltage and overvoltage supervision of V_{01}. - Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). - DC fail will go high or open if $V_{01}<90 \%$ or $V_{01}>110 \%$ of V_{01} set, measured in front of the ORing FETs. - Green LED on the front panel indicates normal operation; LED will flash if in parallel operation $V_{O 1}$ is OK , but the unit is disabled.
Critical temperature Warning/Fan Fail	$\begin{aligned} & \mathrm{OC[U1]} \\ & \& I^{2} \mathrm{C} \end{aligned}$	Indicates the PSU operating temperature has reached [$\left.T_{\text {shut-down }}-10 \mathrm{~K}\right]$ Indicates if the unit is in over-temperature shutdown. - Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). - The OC-output will go low 100 ms before an over-temperature condition shuts down the unit. - An amber LED on the front panel indicates over-temperature or fan fail.
DC voltage monitoring	$1^{2} \mathrm{C}$	Monitors the main output voltage, $\mathrm{V}_{\mathrm{O} 1}$, seen at the output connector Accuracy is $\pm 1 \%$ over setting range and temperature.
DC current monitoring	$1^{2} \mathrm{C}$	Monitors the output current l_{01} : Accuracy $\pm 1 \%$ over the load range.
Active current share interconnect	OC[R4]	Line must be connected to all paralleled PSUs to allow active current share functionality between units
V_{01} presets	OC[T4,T5]	Output voltage is preset per programming of T4, T5 - $\mathrm{T} 4 / \mathrm{T} 5=\mathrm{LOW} / \mathrm{LOW}=>\mathrm{V}_{01}=28 \mathrm{VDC}$ - T4/T5 $=$ LOW $/ \mathrm{HIGH}=\mathrm{HIGH} / \mathrm{LOW}=>\mathrm{V}_{01}=32 \mathrm{VDC}$ - T4/T5 = HIGH / HIGH => V $\mathrm{V}_{01}=36 \mathrm{VDC}$
$\mathrm{V}_{\mathrm{O} 1}$ voltage trimming (margining)	$1^{2} \mathrm{C}$	Output voltage trimming Vo1: ± 2 VDC Setting accuracy over $I^{2} \mathrm{C}: \pm 50 \mathrm{mV}$ at V_{01} nom, $\pm 150 \mathrm{mV}$ over setting range
Fan speed control	$1^{2} \mathrm{C}$	Two fan speed levels automatically set depending on the internal temperature. The fan speed can be set to full speed or automatic control via $I^{2} C$ command.
Fan OK/FAIL	$\begin{gathered} \mathrm{OC[U1]} \\ \& 1^{2} \mathrm{C} \end{gathered}$	Indicates if the cooling fans are operating or have failed.
Synchronized startup pin	OC[R5]	Overcurrent signal which can be used for synchronous startup of units in parallel or to recover from an overload condition.

${ }^{1}$ Abbreviations used:

- OC[\#] => Hardwired signal accessible at PSU output connector, with pin number reference
- FP => Provided by devices located on PSU Front panel
- $I^{2} C \quad=>$ Signal provided over $I^{2} C$ communication system; detailed $I^{2} C$ information is available from the specific model's $I^{2} C$ Manual found on the Power-One web site.
${ }^{2}$ See LED Function table for further details

Output Connector Pinning and Signal Specification

Output Connector Description	OC Pin \#	Type	Signal Reference	Low level High level	V max 1 max
Over-temperature / Fan Fail	U1	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series	LGND	$\begin{gathered} <0.4 \mathrm{~V} \text { @ } 20 \mathrm{~mA} \\ \text { Pull up } \\ \hline \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
AC Fail / Power down warning	U2			$\begin{gathered} <0.4 \mathrm{~V} \text { @ } 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Power Supply Present	U3	$1 \mathrm{~K} \Omega$ Resistor connected to logic GND	LGND	Open Pull up	$\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
DC Fail / Output voltage fault	U4	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series	LGND	$\begin{gathered} \text { <0.4V @ } 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Internal ground (INT GND)	U5	Used only for ADDRx and V_{01} set. Do not connect the internal grounds in systems with several units.	Connected to V_{01} - line before the output filter	-	-
ADDR0 $1^{2} \mathrm{C}$ address bus	T1	```High = internal 10 K\Omega PU to 5V=> Logic 1 Low = connect to INT GND => Logic 0```	INT GND	Logic 1 Logic 0	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
ADDR1 $1^{2} \mathrm{C}$ address bus	T2				
ADDR2 ${ }^{2} \mathrm{C}$ address bus	T3				
V_{01} set	T4				
V_{01} set	T5				
SDA, $I^{2} \mathrm{C}$ serial data line	S1	$I^{2} \mathrm{C}$ compatible signal referenced to logic GND 5 V or 3.3 V logic	LGND	Logic 1 Logic 0	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
SCL, $I^{2} \mathrm{C}$ serial clock line	S2				
Auxiliary power +5 V	S3	$\mathrm{V}_{\mathrm{O} 2}+$ output, isolated from main output	Aux output is floating	-	-
Auxiliary power +5 VRTN	S4	Aux output return; ground isolated from main output			
Logic ground (LGND)	S5	Internally connected to Aux GND through 10Ω resistor. Wire LGND separately from Aux RTN and main output GND to minimize noise on signals and $\mathrm{I}^{2} \mathrm{C}$ bus. Leave open if not used.	-	-	-
Output inhibit R1	R1	PS active when pulled low (DC-DC stage off when left open)	LGND	$\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$
V sense +	R2	Open or connected to $\mathrm{V}_{\mathrm{O}_{1}+}$ at the load Internally connected to $\mathrm{V}_{01}+$ via 100Ω.	-	-	$\begin{gathered} \mathrm{dV}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$
V sense -	R3	Open or connected toV V_{01-} at the load Internally connected to V_{01} - via 100Ω.	-	-	
Active Current Share	R4	This pin must be interconnected to pin R4 of all other paralleled PSUs for proper operation of active current share function	-	-	2V
Synchronized Startup (for paralleled units)	R5	Open or connected to synch startup circuit	V_{01} - at the OC		$\begin{gathered} 12 \mathrm{~V} \\ 2 \mathrm{~mA} \end{gathered}$
V_{01}	P1, P3, P5	Main output - pins	-	-	-
$\mathrm{V}_{01}+$	P2, P4, P6	Main output + pins	-	-	-
Input Connector Description	$\begin{gathered} \mathrm{OC} \\ \text { Pin \# } \end{gathered}$	Type			
Protection Earth	P1	PE			
Phase	P2	L			
Neutral	P3	N			

Protection

Parameter	Conditions/description	Min	Nom	Max	Unit
Input fuse	Not user accessible	$25 A F$			
Inrush current limitation		with NTCs			
Output		No-load, short circuit, and overload proof			
Overvoltage protection latching ${ }^{1}$			40	V	
Over-temperature protection	Absolute		95	${ }^{\circ} \mathrm{C}$	

LED Indicator Functionality

Condition	Power Fail (AC OK)	Output Good (DC OK)	Fan Fail and Over - Temperature
Normal Operation	Green	Green	OFF
Power Supply is inhibited	Green	OFF	Amber
Input AC is low	OFF	OFF	Amber
Input AC is low or missing	OFF	OFF	Amber/OFF
Over-temperature	Green	OFF	Amber
Output overload (In regulation)	Green	Green	OFF
Output Overloaded (Out of Regulation)	Green	OFF	OFF
Fan Not running	Green	OFF	Amber
Power Supply Failed	OFF	OFF	OFF/ Amber

Cooling:

To achieve best cooling results sufficient airflow through the unit must be ensured. Do not block or obstruct the airflow at the rear of the unit by placing large components directly at the output connector.

Mechanical Data

Mechanical Data (W, H, D) $\quad 5.6^{\prime \prime}(141.2 \mathrm{~mm}) \times 1.6^{\prime \prime}(40.5 \mathrm{~mm}) \times 12^{\prime \prime}(304.8 \mathrm{~mm})$

Output Connector FCI part no. 51732-020LF

Input Connector FCl part no. 51939-126LF

Input and Output Connector Descriptions

FXP series front bezel showing LED indicators and recessed enable switch

Female ledge connector: Manufacturer: FCI
Output connector Part No.: 51762-106020000AA LF (Horizontal)
Output connector Part No.: 51742-106020000AA LF (Vertical)
Input connector Part No.: 51915-056LF (Horizontal)
Input connector Part No.: 51940-099LF (Vertical)
Information on availability under http://www.stkcheck.com/evs/fcielectronics/fcisearch.asp

