

1040-0012 Revision
 ENGINEERED BY

CAMBRIDGE TECHNOLOGY

ScanMaster Controller

Advanced Laser Positioning and Control for Laser

Steering Systems

Software Reference Manual

Read carefully before using.

Retain for future reference.

Table of Contents

TABLE OF CONTENTS

Table of Contents 2

List of Tables 8

1 Important Information 1

1.1 Safety Symbols 1

1.2 Safety Labels 2

1.3 General Safety Guidelines 2

1.4 Customer Support 3

2 Introduction 5

2.1 General Notes 5

2.2 Using This Manual 5

2.2.1 Purpose 5

2.2.2 Revision History 6

2.3 Warranty Information 9

3 SMC Product introduction 11

3.1 System Description 11

3.2 Feature Overview 12

3.2.1 Hardware Features 12

3.2.2 Software Features 13

3.3 Application Programming Interface 13

3.3.1 Installation Location 14

3.3.2 API Structure 15

3.3.3 Win32 C++ Interfaces 16

4 Software Overview 18

4.1 The Use of XML in the API 20

5 Broadcast API 22

Table of Contents

5.1 Establishing a Connection 22

5.1.1 clientAttachBroadcast 22

5.1.2 clientDetachBroadcast 23

5.2 Retrieving Broadcast Data 24

5.2.1 getServerCount 24

5.2.2 getServerList 25

5.2.3 getBroadcastData 26

5.3 Broadcast Data Definitions 27

5.3.1 Broadcasted System Information 28

5.3.2 Broadcasted Status Information 32

6 Session API 36

6.1 Access to SMC Modules 36

6.1.1 loginSession 36

6.1.2 logoutSession 37

6.2 Configuration Data Management 38

6.2.1 getFixedDataList 39

6.2.2 requestFixedData 41

6.2.3 sendFixedData 42

6.3 Configuration Data Definitions 43

6.3.1 Administration Configuration 45

6.3.2 Controller Configuration 51

6.3.3 Laser Configuration 58

6.3.4 Lens Configuration 67

6.3.5 Correction Tables 70

6.3.6 User Configuration 83

6.3.7 Performance Adjustments 85

6.3.8 Servo Configuration 86

6.4 Marking Job Specification 89

6.4.1 Job Data Types 89

6.4.2 Job Data Definition 89

6.4.3 Job Type Specification 91

6.5 Job Parameters and Commands 91

6.5.1 User Units Conversion 91

6.5.2 Motion Control Parameters 94

Table of Contents

6.5.3 Motion Control Commands 109

6.5.4 Laser Control Parameters 126

6.5.5 Laser Control Commands 132

6.5.6 External I/O Commands 135

6.5.7 Utility Commands 138

6.5.8 Coordinate System Transform Parameters 142

6.5.9 Hardware Interface Configuration Parameters 148

6.5.10 Bit-map Raster Support 155

6.5.11 Bit-map Raster Commands 161

6.5.12 Polygon Bit-map Raster Commands 164

6.5.13 Mark-on-the-fly Support 169

6.5.14 Velocity Controlled Laser Modulation 183

6.5.15 Via-hole Drilling Support 189

6.6 Structured Job Orgnization 203

6.6.1 Segment Construct 204

6.6.2 Structured Job Sequencing 205

6.6.3 Structured Job Example 208

6.7 Marking Job Control and Administration 212

6.7.1 sendStreamData (overload 1) 212

6.7.2 sendStreamData (overload 2) 213

6.7.3 sendCorrectionData (overload 1) 215

6.7.4 sendCorrectionData (overload 2) 216

6.7.5 sendCorrectionData (overload 3) 217

6.7.6 saveJobData 219

6.7.7 sendJobData 220

6.7.8 copyJobData 221

6.7.9 manageJobData 221

6.7.10 requestJobNameList 222

6.8 Asynchronous Communication 223

6.8.1 OnConnectEvent 224

6.8.2 OnMessageEvent 224

6.8.3 OnDataEvent 231

6.9 Priority Communication 232

6.9.1 sendPriorityData 232

6.9.2 Priority Messages 233

6.9.3 getPriorityData 242

Table of Contents

6.9.4 GetRegisters Priority Message OnDataEvent Response 243

6.9.5 GetCalFactors Priority Message OnDataEvent Response 245

6.10 API Error Codes 245

7 Remote Control API 247

7.1 TCP/IP Interface 247

7.2 RS232 Interface 248

7.3 Protocol Specification 248

7.3.1 Control and Communications Commands 249

7.3.2 Job Execution Control 263

7.3.3 System Administration Commands 270

7.4 Remote Control Return Codes 279

8 Appendix A - Theory of Operation 280

8.1 Scanning Job Fundamentals 280

8.1.1 Coordinate System Conventions 280

8.1.2 Marks and Jumps 281

8.1.3 Laser Marking Terms and Definitions 282

8.1.4 Micro-Vectoring 283

8.1.5 Delays 283

8.2 Image Field Correction 289

8.2.1 X-Y Mirror Induced Distortion 290

8.2.2 F-theta Objective Induced Distortion 291

8.2.3 Composite Distortion and Correction Methodology 292

8.2.4 Multiple Correction Table Support 292

8.3 Laser Timing Control 293

8.4 Software Control of Laser Timing 296

8.4.1 Laser Timing Emulation 299

9 Appendix B - Error Codes 315

9.1 XML API Error Codes 315

9.2 Remote Control Error Codes 317

9.3 LastError Code Descriptions 319

10 Index 323

Table of Contents

LIST OF FIGURES

Figure 1 - Client-Server Architecture ..19

Figure 2 - SMC Software Data Flow ..19

Figure 3 - SMC Configuration File Relationships ..39

Figure 4 - “Fire-on-the-fly”, Mode 0 ...156

Figure 5 - “Fire-on-the-fly”, Mode 1 ...157

Figure 6 - Standard “Jump-and-fire” Mode ..159

Figure 7 - Synchronous “Jump-and-fire” Mode..161

Figure 8 - Mark-on-the-fly Basic Process Flow ...178

Figure 9 - Mark-on-the-fly Usage in Wire Marking ..179

Figure 10 - Mark-on-the-fly Usage in Multi-image-field Applications..181

Figure 11 - Velocity Controlled Laser Modulation Overview ...184

Figure 12 - Velocity Controlled Laser Modulation: Duty-cycle, Acceleration Effect185

Figure 13 - Velocity Controlled Laser Modulation: Duty-cycle, Deceleration Effect185

Figure 14 - Velocity Controlled Laser Modulation: Frequency, Acceleration Effect186

Figure 15 - Velocity Controlled Laser Modulation: Frequency, Deceleration Effect187

Figure 16 - Velocity Controlled Laser Modulation: Laser Power ..187

Figure 17 - Interlock Sequencing ..230

Figure 18 - Scanning System Coordinate Conventions ...280

Figure 19 - Laser Marking Sample ..281

Figure 20 - Micro-vector Operation ...283

Figure 21 - Micro-vectoring and Laser Timing Relationships ...289

Figure 22 - Projection System Layout ...290

Figure 23 - Pincushion Distortion Caused by an X-Y Mirror Set ...291

Figure 24 - Pillow Distortion Caused by F-theta Lens ...291

Figure 25 - Composite Image Field Distortion ..292

Table of Contents

Figure 26 - Multiple Correction Table Usage in the SMC ...293

Figure 27 - Laser Timing Relationships ...294

Figure 28 - Laser Timing for CO2 Laser Systems ...300

Figure 29 - Nd:YAG Emulation Mode-1 (Raylase Nd:YAG Mode-1 and Scanlab YAG 1).......................302

Figure 30 - Nd:YAG Emulation Mode-2 (Raylase Nd:YAG Mode-2) ...304

Figure 31 - Nd:YAG Emulation Mode-3 (Raylase Nd:YAG Mode-3) ...306

Figure 32 - Nd:YAG Emulation Mode-4 (Scanlab YAG 2) ..308

Figure 33 - Nd:YAG Emulation Mode-5 (Scanlab YAG 3) ..310

Figure 34 - Fiber Laser Timing ..312

List of Tables

LIST OF TABLES

Table 1 - Revision History ... 6

Table 2 - SMC API DLLs ...14

Table 3 - Sample XML Statements ..20

Table 4 - Broadcast Data Types ..27

Table 5 - Data Type Keys ..28

Table 6 - Broadcasted System Information ..28

Table 7 - State Code Descriptions ..31

Table 8 - Broadcasted Status Information ..32

Table 9 - Fixed Data Type Codes ..43

Table 10 - Administration Configuration Data ...45

Table 11 - Controller Configuration Data ...52

Table 12 - Laser Configuration Data: Header and Host Application Initialization Settings59

Table 13 - Hardware Initialization Settings ..61

Table 14 - Lens Configuration Data: Header and Host Application Initialization Settings67

Table 15 - Lens Configuration Data: Hardware Initialization Settings ...69

Table 16 - Correction Table Parametric Information ...71

Table 17 - Correction Table Hardware Initialization Settings ...81

Table 18 - User Configuration Data Settings: Header and Host Application Initialization83

Table 19 - User Configuration Data: Hardware Initialization Settings ...84

Table 20 - Performance Adjustments Data Header ...85

Table 21 - Performance Adjustments Data: Hardware Initialization Settings..86

Table 22 - Servo Config Data ..87

Table 23 - Structured Job Example ...208

Table 24 - OnMessageEvent Message Types ...225

Table 25 - Predefined Application Message Event Codes ..226

List of Tables

Table 26 - Priority Message Descriptions ...233

Table 27 - Laser Marking Terms and Definitions ..282

Table 28 - Delay Parameters ..284

Table 29 - Laser Configuration Control XML Examples ..296

Table 30 - Example CO2 Laser Configuration XML ..301

Table 31 - Example Nd:YAG Mode-1 Laser Configuration XML ..303

Table 32 - Example Nd:YAG Emulation Mode-2 Laser Configuration XML ..305

Table 33 - Example Nd:YAG Mode-3 Laser Configuration XML ..306

Table 34 - Example Nd:YAG Mode-4 Laser Configuration XML ..308

Table 35 - Example Nd:YAG Mode-5 Laser Configuration XML ..310

Table 36 - Example IPG Fiber Laser Configuration XML ...313

Table 37 - API Error Codes ..315

Table 38 - ..315

Table 39 - Remote Control Return Codes ...317

Table 40 - LastError Code Descriptions ..319

Important Information

1040-0012 Revision 1

1 IMPORTANT INFORMATION

For your protection, carefully read these instructions before installing and operating the scan

head.

Retain these instructions for future reference.

Novant reserves the right to update this user manual at any time without prior notification.

If product ownership changes, this manual should accompany the product.

1.1 SAFETY SYMBOLS

This manual uses the following symbols and signal words for information of importance.

 DANGER

Indicates a hazardous situation which, if not avoided, will result in serious injury or death.

 WARNING

Indicates a hazardous situation which, if not avoided, could result in serious injury or death.

 CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

 IMPORTANT

Indicates information considered important but not directly hazard related (e.g. security, hygiene,

or equipment or property damage).

Important Information

1040-0012 Revision 2

1.2 SAFETY LABELS

 DANGER

Laser radiation

can cause severe retinal and corneal burns, burns on the skin, and may pose a fire risk.

• To avoid injury and reduce risk of fire, please follow the control measures and safety

guidelines provided by the laser’s manufacturer, and those established by your Laser Safety

Officer (LSO), Radiation Safety Officer (RSO), or safety department of your business or

institution.

 ESD WARNING

Electrostatic discharge and improper handling

can damage MOVIA scan head’s electronics.
• Keep the equipment sealed until it is located at a proper static control station.

1.3 GENERAL SAFETY GUIDELINES

Laser Radiation

Do not stare directly into a laser beam.

Follow all system laser safety requirements during installation and operation.

Shutter Safety

Where practical, Novanta recommends the use of an internal shutter mechanism

to prevent unwarranted emission of laser radiation. If this is not possible, consult

the laser vendor to design a proper safety shutter that, when activated, will

eliminate all possibility of exposure exceeding Class 1 limits.

Important Information

1040-0012 Revision 3

The safety shutter should be located between the laser and the input aperture of the 3-Axis system.

This is the user’s responsibility Use of controls, adjustments, or procedures other than those

specified in this manual without consulting a competent safety professional may result in component

damage, and/or exposure to potential hazards. Always follow established industrial safety practices

when operating equipment.

This system is designed to be operated in conjunction with a laser. Therefore, all applicable rules and

regulations for safe operation of lasers must be known and applied when installing and operating the

system. Since Novanta Inc. has no influence over the employed laser or the overall system, the

customer is solely responsible for the laser safety of the entire system.

1.4 CUSTOMER SUPPORT

Before contacting Novanta for assistance, review appropriate sections in the manual that may

answer your questions.

After consulting this manual, please contact one of our worldwide offices between 9 AM and 5 PM

local time.

Americas, Asia Pacific

Novanta Headquarters, Bedford, USA

Phone: +1-781-266-5700

Email: photonics@novanta.com

Europe, Middle East, Africa

Novanta Europe GmbH, Wackersdorf, Germany

Phone: +49 9431 7984-0

Email: photonics@novanta.com

Milan, Italy

Phone: +39-039-793-710

Email: photonics@novanta.com

mailto:photonics@novanta.com
mailto:photonics@novanta.com
mailto:photonics@novanta.com

Important Information

1040-0012 Revision 4

China

Novanta Sales & Service Office, Shenzhen, China

Phone: +86-755-8280-5395

Email: photonics.china@novanta.com

Novanta Sales & Service Office, Suzhou, China

Phone: +86-512-6283-7080

Email: photonics.china@novanta.com

Japan

Novanta Service & Sales Office, Tokyo, Japan

Phone: +81-3-5753-2460

Email: photonics.japan@novanta.com

mailto:photonics.china@novanta.com
mailto:photonics.china@novanta.com
mailto:photonics.japan@novanta.com

Introduction

1040-0012 Revision 5

2 INTRODUCTION

2.1 GENERAL NOTES

Novanta reserves the right to make changes to the products covered in this manual to improve

performance, reliability, or manufacturability.

Although every effort has been made to ensure accuracy of the information contained in this manual,

Novant assumes no responsibility for inadvertent errors. Contents of the manual are subject to

change without notice.

2.2 USING THIS MANUAL

2.2.1 PURPOSE

This manual covers the XML based application programming interface for the ScanMaster Controller

(also known as the SMC). Information on the SMC hardware can be obtained from the SMC

Hardware Reference Manual (Lit. No. P0900-0168).

Additional detailed operational information is contained in “1

Introduction

1040-0012 Revision 6

Appendix A - Theory of Operation” on page 280.

2.2.2 REVISION HISTORY

The following table shows the revision history for this document.

Table 1 - REVISION HISTORY

REV DATE Changes from previous revision

A Dec 11, 2014 First release

B Nov 2, 2015

Attach/Detach session is now obsolete

Redistributables directory has been reorganized

Win32 access is through new DLL interfaces

Added AdminConfig items to configure IP addressing

Added ControlConfig items for marking mode control, digital polarity

control, and external pause control.

JumpAndFireList methods added to API to permit binary data passing

for efficiency

Section added for via-hole drilling explaining closed-loop and the new

open-loop modes

All Rev 1 tags in LaserConfig file have been deprecated and removed

from the definitions

Rev 2 tags LaserModType and LaserModSyncSrc are now deprecated in

the LaserConfig file replaced by bits in the LaserModeConfig tag value

Remote Control API now supported

SMC LastError code table added

MotfEnable description expanded to describe Continuous and

Continuous with edge-of-field detection modes.

Introduction

1040-0012 Revision 7

C Dec 5, 2016

Updated contact information and changed CTI references to Cambridge

Technology

Installation folder root has changes from “CTI” to “Cambridge
Technology”

Correction table port mappings were fixed to match the implementation

SetMotfEncoderRate (21) Remote Control API Command is now

Obsolete

Attach/Detach session is reinstated

C++ interfaces have been added method descriptions

New class-based C++ wrapper DLLs are available for C++ app

development.

Added <Set id=’XY2AddressMode’> command

MotfWaitForTrigger count value is raw encoder counts

Added JumpAndDrillList commands

LensConfig table offsets are now I33

Use new CT logo and fixed Japan support e-mail address

Added a section on EC1000 Win32 application migration to the new

Win32 DLLs

Exception code table updated

Fixed some formatting issues

Added sendCorrectionData (overload 3)

<LaserEnable> changed to <set id=’EnableLaser’>

User Config offset values are floats

D Mar 27, 2017

Priority message “Restart” is now marked as available

Remote API message “SetMotfEncoderRate” has be un-obsoleted

Footer Copyright notice changed to 2017

E July 18, 2017 Added WobbleMode to set constant overlap wobble at full mark speed

Introduction

1040-0012 Revision 8

F January 2018

Updated description of StartupJob in the Control Config file.

Removed obsolete AxisDACRange and ServoConfig settings in the

Control Config file.

Added HeadOffset property

RequestFixedDataList → getFixedDataList to match the implementation

Fixed COM port numbering to match the hardware labeling

Added startup error codes to LastError broadcast parameter description

Added description of extended MotfEnable modes for continuus

tracking

Fixed <set id='XY2AddressMode'> syntax

Added pixel data description to RasterLine

Fixed syntax error in GetCalFactors priority message

Added <set id=’SMCInsGenMode’>

Added <GSBusDisable>

G June 2018

Fixed typo in CalibrateJumpTime

Changed valid range of offset values of RemoteAPI

“SetPerformanceGlobals” command to be 24 bits.

H Feb 2019

Added description of new Remote API command syntax

Added ScanScript Remote API commands

Added SyncFileSystem, StartLogging, StopLogging & PowerScale priority

messages

Added LissajousWobble, WobbleTable commands, and Wobble

direction

Introduction

1040-0012 Revision 9

J January 2020

Removed RasterModes 2 & 3 and optimize option: unsupported modes

Added access to both MOTF frequency values in GetRegisters

Updated error code tables

Message event code tables clarified

Added explanation of laser types 100 and greater in the laser config file

Added clarifying description about the value of the MOTF count register

Added EnableZCompensation and SyncMasterEnabled to ControlConfig

file

Added WaitUntilGalvoCmdDelayComp to JumpAndDrillList

Added GalvoCmdMarker command

Added MotfTriggerEvent command

Remote API Admin and User PIN commands 500, 501, 512, 513 are

obsoleted

Remote API commands Take/Release Host Control (2 & 3) are

unobsoleted and clarified as to effect

K July 2020
Updated error code tables

Added HeadTransform command

L March 2021
Added L3_INPOS signal to WaitForIO and CurrentDIO register bits

Added Polygon Raster section

M February 2022

Added priority message “WriteDigital” which was missed in V3.0 doc
update

Raster line pixel definition updated to reflect single-bit-per-pixel packing

Corrected value range of LongDelay

Reformatted document

2.3 WARRANTY INFORMATION

The Customer shall examine each shipment within 10 days of receipt and inform Novanta of any

shortage or damage. If no discrepancies are reported, the shipment will be considered as delivered

complete and defect-free. Novanta warranties products against defects up to 1 year from

manufacture date, barring unauthorized modifications or misuse. Repaired product is warrantied for

90 days after the repair is made, or one year after manufacture date - whichever is longer.

Introduction

1040-0012 Revision 10

Contact Customer Service at +1-781-266-5800 to obtain a Return Materials Authorization (RMA)

number before returning any product for repair.

All orders are subject to the Terms and Conditions and Limited Warranty. Contact your local sales

office for the latest version of these documents and other useful information.

Customers assume all responsibility for maintaining a laser-safe working environment. OEM

customers must assume all responsibility for CDRH (Center for Devices and Radiological Health)

certification.

SMC Product introduction

1040-0012 Revision 11

3 SMC PRODUCT INTRODUCTION

3.1 SYSTEM DESCRIPTION

SMC is a self-contained controller that provides advanced hardware and software control technology

to drive laser scanning systems. The Ethernet-connected SMC board is designed to permit remote

embedding and control of a scan-head and laser system. It is capable of controlling two scan-heads

with up to three motion axes each with concurrent laser timing control. It also provides integrated

synchronization I/O for connection to factory automation equipment.

Connection to a PC for job download and administrative control is made via Ethernet® network using

industry standard TCP/IP protocols. In addition to Ethernet connectivity, the SMC provides external

USB connections to support job file distribution via industry standard USB Flash drives. RS232 and

RS485 Serial I/O is also provided for laser control, external automation control, and diagnostic access.

In a typical installation, the SMC is a “smart controller” device, which can be installed remotely in a
laser scanning system. Positioning vectors are organized as packets which represent an entire job, or

sequential parts of a job. These packets are then sent from a networked PC to the SMC for local

processing. The SMC sequentially processes these vectors in real-time and sends them to the laser

steering galvo servos as digital signals. Alternatively, the job packets can be saved to FLASH memory

on the SMC and the loaded for execution from there.

There is no requirement to dedicate a full-time host PC to a laser scanning system, as the SMC can

process vectors while the PC is used for other purposes. In fact, one PC can support multiple SMC-

based scanning systems with no loss in performance. This is due to the large amount of buffer

memory available on the controller, the use of a separate supervisory processor on the controller to

handle network communication processing, and the complete off-loading of time-critical tasks to a

second real-time processor on the SMC.

Direct cabling for scan-head communication to the SMC is possible for both XY2-100-based heads

and Cambridge Technology LightningTM II heads. Laser interfacing is done through a standard 0.1”
50-pin IDC ribbon-style connector to laser personality cards or cables that present laser-specific

SMC Product introduction

1040-0012 Revision 12

connections. Direct connection is also possible with sparsely populated pin-in-shell-style connectors.

The laser signals are organized such that an IPG YLP fiber laser with type E interface can be directly

connected using a ribbon cable.

I/O signals for automation are presented in a 0.1” 20-pin header for easy access. All I/O signals are

also presented in an inter-board transition connector that can be direct connected to an expansion

I/O board. This arrangement permits alternate connector usage and additional signal conditioning

options.

3.2 FEATURE OVERVIEW

3.2.1 HARDWARE FEATURES

• Tethered and stand-alone operation for "embedded" installation in scanning equipment

• Dual processor architecture with integrated 100/1000BaseT Ethernet communication capability

• Real-time processing engine for precise, synchronized scanner movement and laser control

• Direct 24-bit GSBus interface to Cambridge Technology LightningTM II digital galvo systems

• Standard support of the 16-bit XY2-100 protocol for non-LightningTM II heads

• Dual scan-head control via the XY2-100 or GSBus interface

• Software-selectable polarity and timing of six TTL laser control signals

• Two auxiliary analog output channels (12-Bit) 0-10V for control of laser current or pulse intensity

• One 8-Bit TTL digital output port for laser power control

• Four 24V-compatible general purpose digital outputs

• Four 24V-compatible general purpose optically isolated digital inputs

• Seven 24V-compatible dedicated outputs and optically isolated inputs for system control and

external equipment synchronization

• One USB socket and one USB header for portable flash disk access

• 3GBytes of on-board Micro SD card flash for storage of firmware, local jobs, and parameters

• 300MB RAM for downloadable job data storage

• One RS232 serial port for console and smart-display use

SMC Product introduction

1040-0012 Revision 13

• One RS232 serial port for general purpose use

• One RS232 serial port for laser control (included in the laser connector)

• One RS485 serial port for smart-controller motion control

• Two quadrature encoder inputs for Mark-on-the-fly use

3.2.2 SOFTWARE FEATURES

The SMC is designed with a client-server architectural model. The SMC implements all required

server code functions including the broadcast of identification and status information, vector packet

handling, command and control communications, and real-time positioning operations. Host-to-SMC

communications uses TCP/IP as a transport mechanism over Ethernet.

To simplify integration with third-party application software, a Microsoft Windows-compatible

Application Programming Interface (API) is provided. Two API formats are supported: .NET and

Win32 DLL. The APIs take care of all network connection requirements, and they abstract many of

the discrete functions of the module into higher-level vector-oriented instructions.

While this document describes the low-level EC1000 compatible XML API, the recommended

interface for new application development for the SMC is Cambridge Technology’s high-level

ScanMaster API. This API provides a high-level hardware abstraction, graphical file importing and

advanced shape rendering. In addition to these features, the ScanMaster API permits access to

ScanScript, the powerful embedded scripting language feature that enables flexible automation

integration and local rendering of bar codes, text, and various other shapes. This capability is very

useful in structuring custom applications that require real-time rendering of serial numbers and data-

codes as in some mark-on-the-fly situation.

In addition to the programming interface DLLs, example code and administrative management tools

are provided to facilitate setup, configuration, and calibration.

3.3 APPLICATION PROGRAMMING INTERFACE

The host software Application Programming Interface (API) is implemented in Microsoft's C#

language and is exposed as Windows .NET assemblies and as COM objects. It is also accessible via a

bridge DLL that provides Win32-style access without the complexity of COM. These interfaces permit

access from any suitable Microsoft Windows platform programming language such as Visual Basic,

C++, C#, etc.

SMC Product introduction

1040-0012 Revision 14

The DLLs and .tlb files that make up the COM interface are automatically installed and registered in

the Window Registry by a setup installation program on the software distribution CD. Unmanaged

(non-.NET) programming languages such as C++ can access the DLLs through:

• COM objects that are imported into the IDE through the use of the COM object browser

• Traditional Win32 style wrapper DLLs

The COM interfaces are identified as ICti.Broadcast and ICti.Session. In languages based on Microsoft

.NET technology, the interfaces are available as assemblies that can be referenced within a project.

For backward compatibility with applications developed for the EC1000, DLLs with interfaces defined

as ILecSession and ILecBroadcast are also provided however these interfaces are not recommended

for continued use.

Example code that illustrates the use of the API is contained in the SDK installer and is loaded on the

computer during API installation. The code examples are in a set of subdirectories in the Sample

Programs directory where the API software is installed. The DLLs making up this API can also be used

to control EC1000 platforms with firmware version 2.8.0 and above.

3.3.1 INSTALLATION LOCATION

The DLLs, libraries and header files that make up the API are installed in subdirectories of the

following location on the installation drive (typically the C drive):

C:\Program Files (x86)\Cambridge Technology\SMC\Client \Redistributables

If the 64-bit installer is chosen, then the path will be:

C:\Program Files\Cambridge Technology\SMC\Client \Redistributables

The subdirectories Bin, Lib, and Include contain the actual files used by an application. The DLL

names and their functions are defined in the following table.

Table 2 - SMC API DLLS

DLL name Function

Cti.Broadcast.dll, Cti.Broadcast.tlb Contains the .NET and COM Broadcast API entry points.

Cti.Session.dll, Cti.Session.tlb Contains the .NET and COM Session API entry points.

Cti.CommonLib.dll

Cti.FTPClient.dll
Contains support functions for the API. Required for use.

SMC Product introduction

1040-0012 Revision 15

DLL name Function

Cti.Session.Win32.dll,

Cti.Session.Win32.lib,

CTISessionWin32.h

Cti.Broadcast.Win32.dll,

Cti.Broadcast.Win32.lib,

CTIBroadcastWin32.h,

SMCEventCodes.h

Contains Win32/C++ compatible entry points to the

Broadcast and Session DLLs. These iterfaces are non-

class based and use an optional device index argument to

specify a controller in a multi-controller system.

Cti.Session.Win32Cls.dll,

Cti.Session.Win32Cls.lib,

CTISessionWin32Cls.h

Cti.Broadcast.Win32Cls.dll,

Cti.Broadcast.Win32Cls.lib,

CTIBroadcastWin32Cls.h

SMCEventCodes.h

Contains Win32/C++ compatible entry points to the

Broadcast and Session DLLs. These interfaceas are class-

based and more closely match the underlying .NET

interfaces. These interfaces support and unlimited

number of controller connections.

Cti.TelnetClient.dll

Utility functions to support Telnet access to the SMC.

Private to Cambridge Technology. Used by the firmware

updater utility.

Cti.ECUtils.dll,

CtiECUtilsWin32.h,

Cti.ECUtilsCls.dll,

CtiECUtilsWin32Cls.h

Utility functions used by the demo programs. Not

necessary for normal use but contains useful functions

for all applications. Source code for this DLL is provided

as part of the sample programs.

3.3.2 API STRUCTURE

The API is divided into three components:

1. The Broadcast API, which is used to identify and examine the status of SMCs on the network

2. The Session API, which is used to transfer configuration and job data to and from a selected

controller for real-time processing

3. The Remote Control API, which is used to provide simple ASCII character-string-level control

of an SMC that has been conditioned to run locally stored marking jobs.

For convenience, the API is defined using .NET C# syntax. All functions return unsigned integer codes

to indicate the success or failure of the operations. These codes are defined in Table 37 - API Error

Codes on page 315.

SMC Product introduction

1040-0012 Revision 16

The API makes extensive use of XML to pass parameters between a client application and the DLLs.

This technique dramatically reduces the number of interface methods required to control an SMC

module. The following sections explicitly define the XML interface requirements.

Sample programs illustrating the use of the API are located in the C:\Program Files

(x86)\CTI\SMC\Client\Sample Programs directory.

3.3.3 WIN32 C++ INTERFACES

The XML API DLLs are written using Microsoft .NET technology. Two wrapper DLLs are provided to

facilitate interfacing to main DLLs from unmanaged software development environments. These

DLLs handle the data marshalling between the environments and can be called directly from a C++ or

other unmanaged code development environments.

The interfaces are defined in the header files CTISessionWin32Cls.h and CTIBroadcastWin32Cls.h

contained in the \Client\Redistributables\Include directory. Where possible, the method names and

arguments are preserved intact so correlating the documentation in this manual with the method

names should be straight-forward. In cases where multiple method overloads are provided in the

.NET DLL, the alternate interface is differentiated with a suffix “2” at the end of the method name.

Migrating EC1000 Win32 Applications

An older deprecated C++ method interface is also provided for backwards compatibility to EC1000

based applications. This set of interfaces is not class-based and uses a device index parameter to

differentiate multiple controller targets. If only a single SMC is used, then there is no need to supply

the index number as it will default to zero.

These older interfaces have been repackaged into two separate DLLs with different DLL names from

the EC1000 equivalent. The DLLs, link libraries and header files can be found as follows:

EC1000 SMC

\Client\EC1000Win32.dll \Client\Redistributables\Bin\Cti.Session.Win32.dll

\Client\Redistributables\Bin\Cti.Broadcast.Win32.dll

\Client\EC1000Win32.lib \Client\Redistributables\Lib\Cti.Session.Win32.lib

\Client\Redistributables\Lib\Cti.Broadcast.Win32.lib

\Client\EC1000Win32.h \Client\Redistributables\Include\CtiSessionWin32.h

SMC Product introduction

1040-0012 Revision 17

\Client\Redistributables\ Include

\CtiBroadcastWin32.h

The application code should be recompiled using the new header files, libraries, and DLLs.

Ultimately, all the DLLs in the \Client\Redistributables\Bin directory should be copied to the

customer application folder.

In the EC1000Win32.dll, there are a few undocumented utility functions that are used in some of the

demo applications:

GetLocalIPAddress(…), ReadFromXMLFile(…), ReadFromXML(…) and DisplayErr(…)

These interfaces and others are exposed in a new DLL: Cti.ECUtils.Win32.dll. If the application

requires these interfaces, the DLL, associated link-library and header files can be found as:

\Client\Redistributables\Bin\Cti.ECUtils.Win32.dll

\Client\Redistributables\Lib\Cti.ECUtils.Win32.lib

\Client\Redistributables\Include\CtiECUtilsWin32.h

Software Overview

1040-0012 Revision 18

4 SOFTWARE OVERVIEW

The SMC controls a laser system's galvanometers, accurately positioning deflection mirrors in

synchronization with laser control signals. The sequence of motions, the speed of operation, the

power that the laser uses, and the synchronization with external equipment is expressed in scanning

jobs. These jobs consist of sequences of instructions to the marking engine located on the SMC

module. Some instructions configure the module in such ways as setting up to emit laser control

signals with the appropriate timing relative to the commanded motion of the laser steering galvos.

The bulk of the instructions, however, are sequences of mark and jump instructions, which describe

when and where to move the galvos and when to gate the laser control signals relative to those

motions.

Job data is typically prepared using editor applications designed for that purpose. These applications

may be custom software applications written by an OEM integrator, or one of several commercially

available packages. Cambridge Technology’s ScanMaster Designer is an example of such an
application. These applications are hosted on a Microsoft WindowsTM-based PC and interface to the

SMC modules through the API DLLs. The DLLs take care of establishing and maintaining

communications with an SMC and provide a managed conduit for passing data to and from the

controller. The following flowchart illustrates this arrangement.

Software Overview

1040-0012 Revision 19

Figure 1 - CLIENT-SERVER ARCHITECTURE

The SMC contains a fully integrated processor and operating system capable of high-level

communications with a supervisory host workstation using TCP/IP protocols. It can also operate in a

fully independent stand-alone mode executing stored jobs. The control software of the SMC is stored

in Flash memory on the module.

In a networked application, the SMC firmware boots upon system power-up and periodically

broadcasts identification information on the network. Application software on a host that links with

the SMC API software can accept and process these broadcast messages. The broadcast messages

contain data that identifies the serial number, friendly name, and IP address of the SMC. This data,

in turn is used to establish session communication channels to the controller. The following figure

illustrates this relationship.

Figure 2 - SMC SOFTWARE DATA FLOW

A communications session permits the transmission of job data to the SMC and the reception of job-

generated messages. Jobs are streamed to the SMC with multiple levels of buffering to guarantee

full marking performance without CPU load-dependent timing anomalies. Two additional channels of

communications are provided to permit asynchronous job aborts, job pausing and resuming, and

message propagation back to the application.

The system also supports the concept of fixed configuration data (i.e., data that defines the

configuration of the scan-head and surrounding electronics). Examples of such data are lens

correction tables, laser interface signal polarities, lens field size, focal length, and calibration values,

etc. This data can be set by a system integrator and stored in Flash memory on the SMC.

Software Overview

1040-0012 Revision 20

There are 2 forms of SMC API. One for use with C#, and the other for C/C++. The DLLs, header files

and libraries are contained in the Cambridge Technology\SMC\Client\Redistributables folder and

should be copied to an appropriate place in the customer’s application development directory
structure

4.1 THE USE OF XML IN THE API

The API uses XML syntax for setting laser timing and scanner parameters, and for specifying motion

vector sequences at any desired speed. XML is a standard text-based specification language used in

many internet applications to represent data in a portable manner. Documentation on XML is

available from many on-line sources.

Job commands and configuration data elements can take multiple arguments to specify their

function. In addition, data may be numeric of several different types or text strings. Depending on

the command, parameters may be passed as XML attributes or as tag values. Lists of values are

separated using a comma (“,”) or semi-colon (“;”). Where lists of floating-point values are passed, the

semi-colon separator is preferred to avoid problems with internationalization of the comma

character as a decimal place specifier. The following table shows a few samples of how XML is used

in the API. Example data is shown in bold font.

Table 3 - SAMPLE XML STATEMENTS

XML Statement Meaning

<set id='JumpDelay'>200</set> The “set” command is used to specify
parameters that modify the behavior of a job

when it is run.

<MarkAbsEx>1000; 2000; 300</MarkAbsEx> Draw a marking vector from the current

position to the target location specified. The

coordinate units can be bits (default) or in user

units of mm, inch, or mils provided that the

bits/mm calibration factors are made known to

the API.

<JumpAbsEx>1.25; 15.5; 0.3</JumpAbsEx> Jump from the current position to the target

location specified in floating point numbers

Software Overview

1040-0012 Revision 21

(could be ms, inch or mils units). Note the use

of the semi-colon separator.

<LaserStandby laser='1' width='10'

period='200' />

Set the standby laser modulation

characteristics for the LASER_MOD1 output to

a pulse width of 10 laser timing ticks with a

period of 200 laser timing ticks. This attribute

style notation is used in the configuration files.

<set id='LaserStandby'>1; 10; 200</set> Equivalent to the previous example except this

is the form used in a job.

Details of these statements and all others are contained in the following sections.

Broadcast API

1040-0012 Revision 22

5 BROADCAST API

The Broadcast API is a set of methods that allow a client application to identify SMC controllers on

the network and to get relevant information about those controllers. On a configurable periodic

basis, the SMC modules broadcast identification packets to the network. The API captures broadcast

messages from all available SMC controllers and makes this information available to the client. This

information is used by the client to establish a communication session with a target controller.

Sessions are used to send job data to a controller and to send/receive module configuration data.

The methods used in sessions are described in Section 6 Session API.

The methods of the Broadcast API return an unsigned integer as an error code. To interpret the error

codes, refer to Table 37 - API Error Codes on page 315.

5.1 ESTABLISHING A CONNECTION

To use the broadcast facility, a connection must be made to the Broadcast API using the following

methods.

5.1.1 clientAttachBroadcast

Purpose Establishes a connection to receive broadcast messages

Syntax

C# uint

clientAttachBroadca

st (

string strMulticastAddress,

string strLocalAddress,

int iLocalPortNumber,

ref int piClientId)

Broadcast API

1040-0012 Revision 23

C++ uint

clientAttachBroadca

st (

const char *

strMulticastAddress,

const char * strLocalAddress,

int iLocalPortNumber,

int & piClientId)

Arguments

strMulticastAddre

ss

IP address to which the SMC devices are

broadcasting over (224.168.100.2 – set in the

Admin Config file on the SMC)

strLocalAddress IP address of the host PC’s network adaptor that
is connected to the SMC modules.

iLocalPortNumber Port number to which the SMC devices are

broadcasting over (11000 – set in the Admin

Config file on the SMC)

piClientId This is an id that is used in calls to other

broadcast methods.

Comments

This method is used by a client application to establish a connection to

the broadcast mechanism of the SMC. Once connected, a client may

receive broadcast messages from all SMC modules on the network. The

messages contain information about the broadcasting module including

the name, internet IP address, and other relevant data. This data is

retrieved through the use of getBroadcastData.

strMulticastAddress and strLocalPortNumber are values that are defined

in the Administration Configuration file. For more information on the

Administration Configuration file, refer to Section Error! Reference s

ource not found. (“Error! Reference source not found.”) on page Error!

Bookmark not defined..

strLocalAddress is required to differentiate which network adaptor is

connected to the SMC. The source code for a sample utility function to

get this information from the Windows operating system is provided in

the Sample Programs directory.

See also clientAttachBroadcast, getServerCount, getServerList, getBroadcastData

5.1.2 clientDetachBroadcast

Broadcast API

1040-0012 Revision 24

Purpose Terminates the connection to the broadcast mechanism

Syntax
C# uint clientDetachBroadcast(int iClientId)

C++ uint clientDetachBroadcast(int iClientId)

Arguments iClientId Identifier of the connection made by the application

Comments
This method is used by a client application to terminate a connection to

the broadcast mechanism of the SMC.

See also clientAttachBroadcast

5.2 RETRIEVING BROADCAST DATA

Several methods are provided to get information about network-attached SMC modules.

5.2.1 getServerCount

Purpose Gets embedded controller device data

Syntax

C# uint

getServerCount(

int iClientId,

out int piServerCount)

C++ uint

getServerCount(

int iClientId,

int & piServerCount)

Arguments

iClientId Identifier of the connection made by the application

piServer

Count

The number of SMC devices that were identified

Broadcast API

1040-0012 Revision 25

Comments

Once a connection to the broadcast mechanism has been established,

broadcast messages are then received, and a table of available modules

is built by the API.

This method returns the number of distinct SMC modules that have

transmitted valid broadcast packets since the clientAttachBroadcast

method was called.

Because of the asynchronous and periodic nature of the broadcast

transmissions, it may take some time before all SMC controllers are

recognized and reported via this method. Several successive calls may

yield different results until enough time has passed to account for the

longest broadcast interval. The broadcast interval is configured in the

Administration Configuration file. It can be changed by using the

requestFixedData method to retrieve it and the sendFixedData method

to update the stored copy.

See also
clientAttachBroadcast, clientDetachBroadcast, getServerList,

getBroadcastData

5.2.2 getServerList

Purpose Gets embedded controller device data

Syntax

C# uint

getServerList(

int iClientId,

out int piServerCount,

out string pstrDeviceList)

C++ uint

getServerList(

int iClientId,

int & piServerCount,

const char * & pstrDeviceList)

Arguments

iClientId Identifier of the connection made by the application

piServerCoun

t

The number of SMC devices that were identified

pstrDeviceLis

t

The names of the SMC devices that were identified.

The string returned contains an XML representation

of the data.

Broadcast API

1040-0012 Revision 26

Comments

This method returns a list of identifiers for the SMC modules for which

valid broadcast packets have been received. One of the friendly names

can used in the method getBroadcastData to obtain more extensive

identification data.

Because of the asynchronous and periodic nature of the broadcast

transmissions, it may take some time before all SMC controllers are

recognized and reported via this method. Several successive calls may

yield different results until enough time has passed to account for the

longest broadcast interval. The broadcast interval is configured in the

Administration Configuration file. It can be changed by using the

requestFixedData method to retrieve it and the sendFixedData method

to update the stored copy.

The friendly name list contains an XML representation of the data. For

example:

 <DeviceList>

 <Device name='SMC_Alpha' ip='192.168.42.30'

mac='00:50:C2:4F:A0:01'/>

 <Device name='SMC_Beta' ip='192.168.42.31'

mac='00:50:C2:4F:A0:06'/>

 </DeviceList>

See also
clientAttachBroadcast, clientDetachBroadcast, getServerCount,

getBroadcastData

5.2.3 getBroadcastData

Purpose Gets embedded controller device data

Syntax

C# uint

getBroadcastData

(

int iClientId,

string strFriendlyName,

int iDataType,

out string pstrData)

C++ uint

getBroadcastData

(

int iClientId,

const char * strFriendlyName,

int iDataType,

const char * & pstrData)

Arguments iClientId Identifier of the connection made by the application

Broadcast API

1040-0012 Revision 27

strFriendlyNa

me

Name of the SMC device

iDataType The type of SMC device data (see Section Error! R

eference source not found. (“Error! Reference

source not found.”) on page Error! Bookmark not

defined.)

pstrData The data requested from the SMC device. The

string returned contains an XML representation of

the data requested by piDataType.

Comments

This function is used by a client application to retrieve various types of

data related to the specified SMC module. This data is defined in the

Data Types section.

See also
clientAttachBroadcast, clientDetachBroadcast, getServerCount,

getServerList

5.3 BROADCAST DATA DEFINITIONS

Both the Broadcast and Session APIs use a data type code. See the following table (“Error! Reference s

ource not found.”) to specify the data that the application is requesting or sending. This is the

iDataType argument in the methods getBroadcastData, requestFixedData, and sendFixedData. All

data types support an XML representation of the data.

Table 4 - BROADCAST DATA TYPES

Broadcast Data Type iDataType Value Code

System Information 0x01

Status Information 0x07

In the following data description tables, example data is shown in bold font. Although in XML all data

is expressed as text, the actual data type interpretation is application dependent. For the SMC, all

data has an expected type interpretation, thus the tables contain a column that indicates the data

Broadcast API

1040-0012 Revision 28

type that is intended for the particular data element. The data types are identified in the following

table (“Error! Reference source not found.”).

Table 5 - DATA TYPE KEYS

Type Identifier Type Description Range

STR ASCII String <= 256 characters

U16 Unsigned 16-bit Integer 0 <-> 65535

I16 Signed 16-bit Integer -32768 <-> +32767

U32 Unsigned 32-bit Integer 0 <-> 4,294,967,295

I32 Signed 32-bit Integer -2,147,483,648 <-> 2,147,483,647

FLT Floating point IEEE 32-bit Floating Point range

BOOL Boolean true, false

HEX Unsigned 32-bit integer 0x00000000 <-> 0xFFFFFFFF

All the data retrievable using the getBroadcastData method is read-only.

5.3.1 BROADCASTED SYSTEM INFORMATION

The broadcasted system information data contains device, hardware, and connection information.

Note: This data defines the basic characteristics of the controller, especially as required to properly

communicate with the controller. It contains a combination of live dynamic data and static data that

is stored on the Flash memory of the device. All data is read-only.

See also getBroadcastData.

Table 6 - BROADCASTED SYSTEM INFORMATION

XML Tag Type Description/XML Example

Data N/A XML Example: <Data type='SysInfoData' rev='1.0'>

Broadcast API

1040-0012 Revision 29

XML Tag Type Description/XML Example

MSN STR Unique board manufacturing code

XML Example: <MSN>SMC-14497864</MSN>

PVer STR Version of the SMC platform operating system software

XML Example: <PVer>Petalinux v2</PVer>

AVer STR Version of the SMC server firmware

XML Example: <AVer>2.3.24.14566</AVer>

ObjExtVer STR Version of the SMC ScanScript engine firmware

XML Example: <ObjExtVer>2.3.24.14566</ObjExtVer>

FPGAFirmVer STR Version of the FPGA firmware that is loaded

XML Example: <FPGAFirmVer>330180118</FPGAFirmVer>

StateCode U32 Connection status of SMC. Refer to the State Code table for a

description of each state code.

XML Example: <StateCode>1</StateCode>

LastError I32 Last system error. For instance, 9001 represents a recent abort

operation had completed. In the case of a faulty start-up of the SMC

due to corrupted configuration files, this code represents the file

type that has problems. If corruption is discovered, the SMC uses

backup default configuration files in order to boot properly. See

Table 40 - LastError Code Descriptions in page 319.

XML Example: <LastError>0</LastError>

FreeTempStorage U32 The amount of free storage in non-persistent memory in Kilo Bytes

XML Example: <FreeTempStorage>359174</FreeTempStorage>

PermStoragePath STR The path to the root of persistent memory

XML Example: <PermStoragePath>mnt</PermStoragePath>

FreePermStorage U32 (Reserved for future use) The amount of free storage in persistent

memory in Kbytes

XML Example: <FreePermStorage>3200000</FreePermStorage>

Broadcast API

1040-0012 Revision 30

XML Tag Type Description/XML Example

FreeUSBStorage U32 (Reserved for future use) The amount of free storage in Kbytes on

the USB Flash device (if the USB Flash device is connected)

XML Example: <FreeUSBStorage>1002200</FreeUSBStorage>

MAC STR Hardware address

XML Example: <MAC>00:1e:c0:98:a0:af</MAC>

NetMask STR Network mask used by SMC. This value is either manually set, or it is

provided by a DHCP or DNS server.

XML Example: <NetMask>255.255.255.0</NetMask>

NetAssign I32 Network assignment can be manual, provided by DHCP, or provided

by DNS

XML Example: <NetAssign>1</NetAssign>

IP STR IP address used by SMC. This value is either manually set, or

provided by a DHCP or DNS server. This IP address is used in the

loginSession method to connect to a specific SMC.

XML Example: <IP>192.168.100.20</IP>

ConnectIP STR The client IP address that is currently connected to the SMC

XML Example: <ConnectIP>192.168.100.1</ConnectIP>

FriendlyName STR Name used by the SMC. If the SMC has trouble booting up and

needs to resort to using the backup configuration files (see

LastError), the FriendlyName will be preceded with “BACKUP_”

XML Example: <FriendlyName>SMC_Alpha</FriendlyName>

ConnectJob STR The job name that is currently marking

XML Example: <ConnectJob>Hubble</ConnectJob>

Port U32 The network port currently in use by the Job Session

XML Example: <Port>12200</Port>

HSN STR (Reserved for future use) Marking head serial number.

XML Example: <HSN>HEAD-0000023</HSN>

Broadcast API

1040-0012 Revision 31

XML Tag Type Description/XML Example

Data N/A End SysInfoData

XML Example: </Data>

The following table contains a description of each state code for the SMC controller. The state code

is included in the broadcasted system information. Refer to Table 6 - Broadcasted System

Information (above) for more information on the broadcasted system information.

Table 7 - STATE CODE DESCRIPTIONS

State Value Description

Available 0 Available for connection

ClientTCP 1 Connected to network client

ClientSerial 2 Connected to serial client

ClientLocal 4 In local mode

Restarting 8 Server restarting

Waiting 16 Waiting for server startup

Pausing 32 Job paused

WaitingTCP 64 Waiting for TCP connection

NotAvailable 128 Server is in a transitional state and unavailable

Error 256 Unrecoverable error state

NotFound 512 Expected resource not found

FPGAError 1024 Unrecoverable FPGA error

The following table contains a description of each error code that may be set by the SMC controller.

The error code is included in the broadcasted system information as the LastError tag value. Refer to

Broadcast API

1040-0012 Revision 32

Table 6 - Broadcasted System Information (above) for more information on the broadcasted system

information.

5.3.2 BROADCASTED STATUS INFORMATION

The broadcasted status includes the information in the following table, as maintained by the marking

engine.

Note: The information in the following table represents the live status of the device. All data is read-

only.

See also getBroadcastData.

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

Data N/A StatInfoData identifier

XML Example: <Data type='StatInfoData' rev='1.1'>

XPosAck BOOL Boolean passed from the X-axis galvo servo controller indicating that

the servo is "settled" at the commanded position. This information is

derived from the XY2-100 status return, bit position. Note that this

feature is not supported by all galvo controllers.

XML Example: <XPosAck>true</XPosAck>

YPosAck BOOL Boolean passed from the Y-axis galvo servo controller indicating that

the servo is "settled" at the commanded position. Note that this

feature is not supported by all galvo controllers.

XML Example: <YPosAck>true</YPosAck>

XPos I32 The value of the current ideal commanded X position prior to lens

correction.

XML Example: <XPos>-2489</XPos>

YPos I32 The value of the current ideal commanded Y position prior to lens

correction

XML Example: <YPos>5510</YPos>

Broadcast API

1040-0012 Revision 33

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

XActPos I32 The value of the actual X position after lens correction

XML Example: <XActPos>-2489</XActPos>

YActPos I32 The value of the actual Y position after lens correction

XML Example: <YActPos>5510</YActPos>

XTemp BOOL This value is true if the X galvo servo indicates an over-temperature

condition in the XY2-100 status word. Note that this feature is not

supported by all galvo controllers.

XML Example: <XTemp>false</XTemp>

YTemp BOOL This value is true if the Y galvo servo indicates an over-temperature

condition in the XY2-100 status word. Note that this feature is not

supported by all galvo controllers.

XML Example: <YTemp>false</YTemp>

ContrlTemp I16 The value of the temperature in Celsius of the SMC

XML Example: <ContrlTemp>32</ContrlTemp>

XStatus HEX Inverted high-byte from the XY2-100 status return. Note that this

value is galvo servo-controller specific.

XML Example: <XStatus>0x31</XStatus>

YStatus HEX Inverted low-byte from the XY2-100 status return. Note that this value

is galvo servo-controller specific.

XML Example: <YStatus>0x31</YStatus>

XPower BOOL This value is true if any of the bits in the XStatus register are asserted.

Note that this value is galvo servo-controller specific

XML Example: <XPower>true</XPower>

YPower BOOL This value is true if any of the bits in the YStatus register are asserted.

Note that this value is galvo servo-controller specific.

XML Example: <YPower>true</YPower>

Broadcast API

1040-0012 Revision 34

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

Interlock HEX This number represents a bitmask that encodes the current state of

the system interlock switches. A "1" in the bit position means that the

interlock has been opened in that position. Bits[3..0] represent the

state of the signals INTERLOCK[4..1].

XML Example: <Interlock>0x4</Interlock>

CurrentDIO HEX This number represents a bitmask that encodes the current state of

the system digital I/O lines:

bits[3..0] == AUX_GPI[4..1]_ISO

bit[5..4] == AUX_START_ISO, START

bits[9..6] == INTERLOCK[4..1] → {LASER_STAT2, LASER_STAT1,

LASER_STAT0, ABORT}

bits[13..10] == AUX_GPO[4..1]

bits[17..14] == JOBACTIVE, ERROR/NREADY, BUSY, LASING

bits[24..18] == LASER_STAT[6..0]

bit[25] == XY2_INPOS

bit[26] == AUX_XY2_INPOS

bit[27] == L3_INPOS

XML Example: <CurrentDIO>0x1023</CurrentDIO>

JobMarker U16 This number is a copy of the current job marker data register that can

be set by an application job via the JobMarker instruction.

XML Example: <Jobmarker>35</JobMarker>

JobDataCntr U32 This number is a copy of the current job data counter. This counter is

cleared whenever the marking engine encounters a <BeginJob>

command. This counter represents the number of 32-bit data

elements that the marking engine has processed since the last time

this value was reset.

XML Example: <JobDataCntr>32336</JobDataCntr>

Data N/A End StatInfoData

XML Example: </Data>

Broadcast API

1040-0012 Revision 35

Session API

1040-0012 Revision 36

6 SESSION API

Once all SMCs are identified using the Broadcast API, individual controllers may be selected for

subsequent communication. The Session API provides the methods to connect to a target SMC, to

get and set configuration data, to send job data, and to manage asynchronous communications

events generated by the controller. Concurrent access to multiple SMCs on a network is supported

by creating multiple SMC session objects and separately logging into each one. Only one host

application at a time can be logged into an SMC.

The methods of the Session API return an unsigned integer as an error code. refer to Table 37 - API

Error Codes on page 315.

6.1 ACCESS TO SMC MODULES

6.1.1 loginSession

Purpose Connects to an SMC device by establishing a session

Syntax

C# uint loginSession(string strLocalAddress,

string strRemoteAddress,

int iRemotePortNumber,

string strUsername,

string strPassword,

uint uiTimeout)

C++ uint loginSession(const char * strLocalAddress,

const char * strRemoteAddress,

int iRemotePortNumber,

const char * strUsername,

const char * strPassword,

uint uiTimeout)

Session API

1040-0012 Revision 37

Arguments

strLocalAddress IP address of the local network adaptor that

is connected to the SMC modules

strRemoteAddress TCP/IP Address of the SMC to login. This is

the "ip" attribute of the SMC selected by the

application and identified in the getServerList

data

iRemotePortNumb

er

Network Port on the SMC supporting the

session. This is the <Port> value of the

SysInfoData returned from the

getBroadcastData call for the selected SMC.

strUsername (Reserved for future use)

strPassword (Reserved for future use)

uiTimeout Duration for attempting call in seconds

Comments

Once SMC modules have been identified via the use of Broadcast API,

a communications session can be opened between the client and a

selected target SMC. Sessions are established via a call to this

method. Multiple sessions to different target SMC controllers are

made by instantiating separate Session objects. A target SMC

controller may only serve one client session at a time.

strLocalAddress is required to differentiate which network adaptor is

connected to the SMC. The source code for a sample utility function

to get this information from the Windows operating system is

provided in the Sample Programs directory.

See also
logoutSession, requestFixedData, sendFixedData, sendStreamData

(overload 1), sendPriorityData

6.1.2 logoutSession

Purpose Disconnects an SMC device session

Syntax
C# uint logoutSession(uint uiTimeout)

C++ uint logoutSession(uint uiTimeout)

Session API

1040-0012 Revision 38

Arguments uiTimeout Duration for attempting call in seconds

Comments

When session communication is completed, the client closes the

session via a call to this method. Once the session is closed, another

new session may be opened to the same or other SMC devices via a

call to loginSession.

Note that if a job was streamed out to the SMC and was still executing

when the logout was invoked, the job will be immediately aborted.

See also loginSession

6.2 CONFIGURATION DATA MANAGEMENT

The SMC has the ability to store a large amount of data in non-volatile Flash memory. This data can

be configuration data or job data. Configuration data is classified as "fixed" data (i.e. it has a lifetime

that spans boot-up cycles of the controller). Some of the configuration data is set at the factory and

is considered permanent read-only information. Other data is used by the controller at boot-up to

properly initialize the hardware interfaces, and still other data is provided for the convenience of the

application programmer to indicate the capabilities of the integrated system. All configuration data

is defined in Section 6.3 (Configuration Data Definitions).

Several XML data files make up the configuration data in a hierarchical relationship as shown in the

following figure:

Session API

1040-0012 Revision 39

AdminConfig.xml

...

 <ControlFile>ControlConfig.xml</ControlFile>

...

ControlConfig.xml

…
 <CorrFile1>10mmF160YAG_Main</CorrFile1>

 <CorrFile2>10mmF160YAG_Pointer</CorrFile2>

 <CorrFile3>10mmF160YAG_Main</CorrFile3>

 <CorrFile4>10mmF160YAG_Pointer</CorrFile4>

 <LaserFile>IPG YLP 20W</LaserFile>

 <LensFile>10mmF160</LensFile>

 <UserFile>AlignAdjustments</UserFile>

 <PerformanceFile>PerfAdjustments</PerformanceFile>

 <ServoFile>ServoParams</ServoFile>

 <VectorFile>ScanPackConfigGeneric</VectorFile>

 ...

10mmF160YAG_Main.xml

Repeat like CorrFile1

IPG YLP 20W.xml

10mmF160.xml

AlignAdjustments.xml

PerfAdjustments.xml
Sample file name assignments

ServoParams.xml

ScanPackConfigGeneric.xml

Figure 3 - SMC CONFIGURATION FILE RELATIONSHIPS

6.2.1 getFixedDataList

Purpose Retrieves a list of the configuration files stored on the SMC

Syntax

C# uint getFixedDataList(out string pstrData

int uiTimeout)

C++ uint getFixedDataList(const char * & pstrData

int uiTimeout)

Arguments
pstrData Requested data

uiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision 40

Comments

The returned string is in XML format. For example:

 <FixedDataList rev='1.0'>

 <FixedDataType id='AdminData'>

 <File>AdminConfig.xml</File>

 </FixedDataType>

 <FixedDataType id='ControlConfigData'>

 <File>ControlConfig.xml</File>

 </FixedDataType>

 <FixedDataType id='LaserConfigData'>

 <File>LaserGeneric.xml</File>

 <File>SPI G3-HS-20.xml</File>

 <File>SYNRAD CO2.xml</File>

 </FixedDataType>

 <FixedDataType id='LensConfigData'>

 <File>LensGeneric.xml</File>

 <File>Lens_50mm_Co2_300mm_CF216.xml</File>

 </FixedDataType>

 <FixedDataType id='CorrTableData'>

 <File>50mm_Co2_300mm_CF216.xml</File>

 <File>PointerFinal_CF180_ZCF160.xml</File>

 </FixedDataType>

 <FixedDataType id='UserCofigData'>

 <File>UserGeneric.xml</File>

 </FixedDataType>

 <FixedDataType id='PerformanceMatrixData'>

 <File>GlobalConfigGeneric.xml</File>

 </FixedDataType>

 </FixedDataList>

See also requestFixedData, sendFixedData

Session API

1040-0012 Revision 41

6.2.2 requestFixedData

Purpose Retrieves fixed data from an SMC device session

Syntax

C# uint requestFixedData(int iDataType

string strStorageName

out string pstrData

uint uiTimeout)

C++ uint requestFixedData(int iDataType

const char *

strStorageName

const char * & pstrData

uint uiTimeout)

Arguments

iDataType Identifier of the requesting data. See Table 9 -

Fixed Data Type Codes on page 43.

strStorageName File name of the data file. The file path is

constructed by the API as follows:

/<PermStoragePath>/SMC/Config/<pstrStorage

Name>.xml

where <PermStoragePath> is defined in the

SysInfoData for the selected SMC and

pstrStorageName is the name of the selected

fixed data file as stored on the SMC without the

".xml" extension.

pstrData Requested data

uiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision 42

Comments

SMC modules are autonomous devices that contain information that

configures the module at boot-up for the particular hardware

arrangement of the marking head. This information defines such things

as the laser interface, the lens characteristics, and the optical system

correction tables. An application can access this information by

specifying the data type using the piDataType argument and providing

a file name for the data as stored on the SMC. The information is

returned as an XML string which must be decoded by the application.

The XML specification for the different data types is defined in Section

Error! Reference source not found. (“Error! Reference source not fo

und.”) on page Error! Bookmark not defined..

The AdminConfig.xml data file (see Administration Configuration)

contains the element definition ControlFile naming the master SMC

configuration file. Within this file are element definitions naming the

currently active lens, laser, correction table, and user definitions files.

These names are typically used as the pstrStorageName argument

above, although other files may be accessed on the SMC file system if

those file names are known and the files are of the proper type.

See also getFixedDataList, sendFixedData

6.2.3 sendFixedData

Purpose Sends fixed data to an SMC device for storage

Syntax

C# uint sendFixedData(string strData

string strStorageName

uint uiTimeout

C++ uint sendFixedData(const char * strData

const char * strStorageName

uint uiTimeout

Arguments

strData The data sent to the SMC device. The string

supplied contains an XML representation of the

data.

Session API

1040-0012 Revision 43

strStorageName File name of the data file. The file path is

constructed by the API as follows:

<PermStoragePath>\SMC\Config\<pstrStorageNa

me>.xml

where PermStoragePath is defined in the

SysInfoData for the selected SMC and

pstrStorageName is the name of the selected

fixed data file as stored on the SMC without the

".xml" extension.

uiTimeout Duration for attempting call in seconds

Comments

• Data retrieved via the requestFixedData method may be modified

and passed back to the controller for local storage. That data

will then be immediately used and also the next time the

module is booted.

• An application should wait for the application message event

"FixedDataProcessed" to be assured the updated data has been

processed by the SMC and is ready for subsequent actions.

See also requestFixedData, getFixedDataList

6.3 CONFIGURATION DATA DEFINITIONS

The Session API uses a data type code to specify the data that the application is requesting or

sending. This is the piDataType argument in the methods requestFixedData and sendFixedData. All

data types support an XML representation of the data.

Table 9 - FIXED DATA TYPE CODES

Fixed Data Type Data ID

Controller Configuration 0x05

Laser Configuration 0x06

Session API

1040-0012 Revision 44

Table 9 - FIXED DATA TYPE CODES

Fixed Data Type Data ID

Lens Configuration 0x02

Correction Table 0x0D

User Configuration 0x0F

Performance Adjustments 0x10

Admin Configuration 0x0A

Servo Parameters 0x20

ScanPack Configuration 0x21

In the following data description tables, example data is shown in bold font. Although in XML all data

is expressed as text, the actual data type interpretation is application-dependent. For the SMC, all

data has an expected type interpretation, thus the tables contain a column that indicates the data

type that is intended for the particular data element. The data types are identified in Table 5 – Data

Types Keys.

All data that can be retrieved with the requestFixedData method is changeable with the

sendFixedData method. This powerful interface permits full configurability of the SMC. Most of the

elements in the data tables are set by a system integrator to provide information for a marking

application programmer to configure the user-interface and control interfaces as a function of the

controller/system hardware configuration. This data is not intended to be changed after it has been

set by an integrator.

In addition to the integrator data, there is a table of data that is intended to be set by a system

administrator. This data can be adapted at the end-customer site to meet specific networking

requirements. This data is also intended to be read-only from a marking application perspective.

Some of the properties defined in the configuration data tables are provided as a convenience to the

application programmer in adapting the software for various target configurations. These properties

are shown first in the tables and identified with the heading “Host application initialization settings”.
The properties are ignored by the controller at boot-up.

Session API

1040-0012 Revision 45

The other data in the tables identified with the heading “Hardware initialization settings” are used by
the controller at boot-up to configure the laser control signals and other hardware features.

All of the configuration data is persistent on the controller and changeable via the API.

6.3.1 ADMINISTRATION CONFIGURATION

Administration Configuration data defines the base behavior of the module. Most of the items

defined here are used to configure the network parameters and diagnostic tracing of the server

software. The ControlFile tag defines the name of the controller configuration file which contains

pointers to other files that define the configuration of the module.

The administration configuration describes configurable properties of the SMC device related to

system administration.

These properties control how the SMC identifies itself and how it records tracing information about

network transactions. All of these properties are used by the controller at boot-up.

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Data N/A Begin AdminData file type data

<Data type='AdminData' rev='3.0'>

DataChannel N/A Begin the Data Channel specification section

 <DataChannel>

Port U32 The TCP/IP port number used to pass job and fixed data to and

from the SMC

XML Example: <Port>12200</Port>

ControlFile STR File name of the controller config data

XML Example: <ControlFile>ControlConfig.xml</ControlFile>

EnableStreamToFile BOOL If True, streaming job data is sent to the <LogFile>. Used only

for system debugging.

XML Example:

<EnableStreamToFile>False</EnableStreamToFile>

Session API

1040-0012 Revision 46

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

StreamFile STR Name of a file that will capture data streamed to the device.

Used only for system debugging.

XML Example: <StreamFile>LogFile.txt</StreamFile>

DataChannel N/A End of the Data Channel section

 </DataChannel>

PriorityChannel N/A Begin the Priority Channel specification section

 <PriorityChannel>

Port U32 The TCP/IP port number used to pass priority command data

to the SMC

XML Example: <Port>12201</Port>

PriorityChannel N/A End of the Priority Channel section

XML Example: </PriorityChannel>

EventChannel N/A Begin the Event Channel specification section

XML Example: <EventChannel>

Port U32 The TCP/IP port number used to pass event data from the SMC

back to the host

XML Example: <Port>12202</Port>

EventChannel N/A End of the Event Channel section

 </EventChannel>

AliveChannel N/A Begin the Alive Channel specification section

 <AliveChannel>

Port U32 The TCP/IP port number used to pass heart-beat information

between the SMC and the host

XML Example: <Port>12203</Port>

AliveChannel N/A End of the Alive Channel section

 </AliveChannel>

Session API

1040-0012 Revision 47

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

BroadcastChannel N/A Begin the Broadast Channel specification section

 <BroadcastChannel>

Address STR IP address used for broadcast messages

XML Example: <Address>224.168.100.2</Address>

Port U32 The port number used for broadcast messages

XML Example: <Port>11000</Port>

Retransmit U32 Broadcast period for the SysInfoData packet (sec)

XML Example: <Retransmit type='SysInfoData' time='5'/>

Retransmit U32 Broadcast period for the StatInfoData packet (sec)

XML Example: <Retransmit type='StatInfoData' time='5'/>

BroadcastChannel N/A End of the Broadcast Channel section

 </BroadcastChannel>

Settings N/A Begin the miscellaneous configuration settings section. Note

that the COM port assignments below must not be duplicated

and must be in the range of COM0 to COM3

 <Settings>

FriendlyName STR The friendly name given this system

XML Example: <FriendlyName>SMC_Alpha</FriendlyName>

HeadSerialNumber STR Serial number of the head assigned by the OEM

XML Example:

<HeadSerialNumber>XYZ</HeadSerialNumber>

LocalMode BOOL The controller is to operate in local stand-alone mode on

power-up. Pendant interactions are required to enable

network operations.

XML Example: <LocalMode>false</LocalMode>

Session API

1040-0012 Revision 48

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

BreakOK BOOL (Reserved for future use)

XML Example: <BreakOK>false</BreakOK>

Client STR Selects the primary interface for accepting control

information. Valid clients are:

 LANStream LAN-based streaming job control

 LAN LAN-based remote control

 RS232 RS232-based remote control

XML Example: <Client>LANStream</Client>

Pendant STR (Reserved for future use).

XML Example: <Pendant></Pendant>

PendantPort STR (Reserved for future use). Selects the COM port used for the

pendant.

XML Example: <PendantPort>COM1</PendantPort>

PendantPortSpeed U32 (Reserved for future use). Baud rate for the pendant COM

port.

XML Example: <PendantPortSpeed>38400</

PendantPortSpeed>

APIPort STR Selects the COM port used for remote API access. If the port is

not specified, then no serial remote API support is available.

XML Example: <APIPort>COM2</APIPort>

APIPortSpeed U32 Baud rate for the API COM port

XML Example: <APIPortSpeed>38400</APIPortSpeed>

MotionPort STR (Reserved for future use). Selects the COM port used for

external motion control access. If the port is not specified,

then no serial motion control is available.

XML Example: <MotionPort>None </MotionPort>

Session API

1040-0012 Revision 49

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

MotionPortSpeed U32 (Reserved for future use). Baud rate for the motion control

COM port

XML Example:

<MotionPortSpeed>38400</MotionPortSpeed>

LaserPort STR Selects the COM port used for laser communication. If the

port is not specified, then no serial laser control is available.

XML Example: <LaserPort>COM3</LaserPort>

LaserPortSpeed U32 Baud rate for the laser COM port

XML Example: <LaserPortSpeed>38400</LaserPortSpeed>

DFMPort STR (Reserved for future use). Selects the COM port used for

changing the position of the Dynamic Focusing Module in scan-

heads equipped with this option. If the port is not specified,

then no positioning control is available.

XML Example: <DFMPort>None</DFMPort>

DFMPortSpeed U32 (Reserved for future use). Baud rate for the DFM positioner

COM port

XML Example: <DFMPortSpeed>9600</DFMPortSpeed>

DebugPort STR (Reserved for future use). If assigned to a free COM port, the

firmware will print debug trace messages on that port. If the

port is not specified, then no debug messages are available.

XML Example: <DebugPort>None</DebugPort>

DebugPortSpeed U32 (Reserved for future use). Baud rate for the software debug

COM port

XML Example: <DebugPortSpeed>38400</DebugPortSpeed>

User STR (Reserved for future use). Password for accessing user-level

pendant functions: six numeric characters only.

XML Example: <User>123456</User>

Session API

1040-0012 Revision 50

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Admin STR (Reserved for future use). Password for accessing

administrator-level pendant functions: six numeric characters

only.

XML Example: <Admin>654321</Admin>

LoggingLevel U32 (Reserved for future use). Level of transaction logging to

perform; used only for system debugging.

XML Example: <LoggingLevel>0</LoggingLevel>

IPMode STR Defines the behavior of the TCP/IP system. Values are:

Static Use the IP Address, Subnet, and Gateway values below

Autodetect IP information comes from a DHCP server

XML Example: <IPMode>Static</IPMode>

IPAddress STR Use this IP Address if IPMode is set to Static

XML Example: <IPAddress>192.168.100.20</IPAddress>

IPSubnet STR Use this IP Subnet mask if IPMode is set to Static

XML Example: <IPSubnet>255.255.255.0</IPSubnet>

IPGateway STR Use this IP Gateway address if IPMode is set to Static

XML Example: <IPGateway>192.168.100.1</IPGateway>

IPTimeout U32 If IPMode is Autodetect, the server will wait this long in

seconds for an address to be assigned by a DHCP server. If

IPRetries has reached the specified limit, the static default IP

Address 192.168.100.20 will be used.

XML Example: <IPTimeout>10</IPTimeout>

IPRetries U32 Numer of time to query the DHCP server for an IP address

before giving up.

XML Example: <IPRetries>3</IPRetries>

IPTryagain U32 Numer of time to query the DHCP server for an IP address

before giving up.

XML Example: <IPTryagain>20</IPTryagain>

Session API

1040-0012 Revision 51

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Settings N/A End Settings

 </Settings>

Data N/A End AdminData

</Data>

6.3.2 CONTROLLER CONFIGURATION

The Controller Configuration file is the master control file for defining the startup configuration of

the controller. It contains pointers to other configuration files that deal with specific elements of the

system such laser timing, correction tables, lens identification, user adjustments, etc. The file names

referenced in the table are XML file names with the .xml extension suppressed. The files are in the

/<PermStoragePath>/SMC/Config directory on the SMC. <PermStoragePath> is the value reported in

the broadcasted SystemData packets.

The values in the Controller Configuration file are normally set by the integrator and are not intended

to be altered by a marking application.

Note: When the Controller Configuration is sent to the SMC, the correction table and laser

configurations referenced are also applied to the controller. Detailed MOTF operation is controlled

through instructions passed as part of the job stream and is not a "mode" of the controller.

See also requestFixedData and sendFixedData.

Controller Configuration Data

The Following table contains the setting for the Controller Configuration file.

Session API

1040-0012 Revision 52

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

Data N/A Begin Controller Configuration file data

<Data type='ControlConfigData' rev='3.1'>

MotfCapable BOOL (Reserved for future use). System is Mark-On-The-Fly (MOTF) capable

(true).

XML Example: <MotfCapable>true</MotfCapable>

MotfCalGain FLT (Reserved for future use). MOTF digital gain factor; used as a fine-

tuning scalar adjustment of MotfCalFactor.

XML Example: <MotfCalGain>1.0</MotfCalGain>

CorrFile1 STR The name of correction table 1 file

XML Example: <CorrFile1>CORRTAB1</CorrFile1>

CorrFile2 STR The name of correction table 2 file

XML Example: <CorrFile2>CORRTAB2</CorrFile2>

CorrFile3 STR The name of correction table 3 file

XML Example: <CorrFile3>CORRTAB3</CorrFile3>

CorrFile4 STR The name of correction table 4 file

XML Example: <CorrFile4>CORRTAB4</CorrFile4>

LensFile STR The name of the lens configuration file

XML Example: <LensFile>LENSFILE2</LensFile>

LaserFile STR The name of the laser configuration file

XML Example: <LaserFile>LASERFILE4</LaserFile>

UserFile STR The name of the user configuration file

XML Example: <UserFile>MYCONFIGFILE</UserFile>

PerformanceFile STR The name of the performance adjustments file

XML Example: <PerformanceFile>PADJUST</PerformanceFile>

ServoFile STR The name of the file that contains parameters of the galvo/servo

system attached to the SMC. Used in adjusting the dynamic behavior of

Session API

1040-0012 Revision 53

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

the embedded ScanPack algorithms to match the galvo/servo

capability.

XML Example: <ServoFile>ServoParams</ServoFile>

VectorFile STR The name of the file that contains default shape parameters for the

embedded ScanPack algorithms.

XML Example: <VectorFile>ScanPackConfigGeneric</VectorFile>

MotfEncoderCal FLT MOTF calibration factor. Relates the encoder counts to laser

positioning bits (bits/count).

XML Example: < MotfEncoderCal >24.23</ MotfEncoderCal >

MotfMode U16 MOTF operational mode:

 0 - Use encoder

 1 - Simulate encoder

XML Example: <MotfMode>0</MotfMode>

MotfDirection I16 MOTF orientation and direction in degrees:

 0 - left to right in the X-axis

 90 - bottom to top in the Y-axis

 180 - right to left in the X-axis

 270 - Top to bottom in the Y-axis

XML Example: <MotfDirection>0</MotfDirection>

LaserPipelineDela

y

U16 The time in laser timing ticks that all laser signals are delayed relative to

micro-vector generation. This is used to compensate for the inherent

delay in servo modules from when a command is applied to when the

galvos actually respond. Units are micro-seconds.

XML Example: <LaserPipelineDelay>450</LaserPipelineDelay>

The maximum pipleine delay value is equivalent to 4000 laser ticks so

the specified value maximum will be reduces depending on the

LaserTiming value. For example, if LaserTiming is 50 (1usec resolution)

then the maximum value will be 4000usec. If LaserTiming is set to 5

(0.1usec resolution), then the maximum piline value is 400usec.

CmdRangeCheck

Mode

U16 Command range checking mode:

Session API

1040-0012 Revision 54

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

 Enable enable checking if non-zero

 Port digital output port to

manipulate

 Value port value to set if out of

range

The port and value definitions are the same as the WriteDigital

command.

This command is used to assert an I/O output if the galvo command

range is exceeded, usually during MOTF operations.

XML Example: <CmdRangeCheckMode>1;3;1</CmdRangeCheckMode>

IntlockConfig HEX Interlock configuration control. In the SMC, the internal Interlock

signals are an aggregate of the external signals {LASER_STAT2,

LASER_STAT1, LASER_STAT0, and ABORT}

There are two fields in the argument:

Polarity

Bits[3..0] represent the interlock signals

INTLOCK[4..1].

A "1" corresponds to no current flowing

through the interlock optical isolator.

This condition is the interlock open

state.

Enable

Bits[11..8] represent the interlock

signals INTLOCK[4..1].

A "1" enables a transition of the

interlock signal going from the

unasserted to the asserted state to

generate an "Interlock" exception and

shut down an active job provided that

bit 12 is also asserted.

Bit[12] is the master enable bit for the

interlock function. If this bit is set, then

all enabled interlock signals should be

de-asserted at power-up time or else

an immediate "Interlock" exception will

Session API

1040-0012 Revision 55

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

be generated when this parameter is

processed. All of the Enable bits can

also be manipulated using the

SetInterlockEnable priority data

message.

If an interlock that is enabled is tripped, the condition that caused the

trip must be cleared and an "Abort" priority message sent before a job

can be restarted without generating another "Interlock" exception.

The current state of the interlock physical signals can be seen in the

Broadcast Status data as element Interlock.

XML Example: <IntlockConfig>0x1707</IntlockConfig>

XY2StatusTiming STR Defines the timing of the decoding of the XY2-100 status line. Early

timing means that the data is clocked on the rising edge of the clock,

Late timing means that the data is clocked on the falling edge of the

clock.

XML Example: < XY2StatusTiming >Early</XY2StatusTiming >

XY2AddressingM

ode

STR Defines the command data width of the XY2-100 interface. Normal is

traditional 16-bit command data. Enhanced is 20-bit command data

used with Cambridge Technology Lightning-II galvos with an XY2-100

interface.

XML Example: <XY2AddressingMode>Normal</XY2AddressingMode>

XY2FrameRate STR Defines the update rate of the XY2-100 digital interface in KHz. If this

value is changed, not all XY2-100 based scan heads may respond

properly.

XML Example: <XY2FrameRate>100</XY2FrameRate>

Session API

1040-0012 Revision 56

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

InsGenMode STR Defines the command generation mode of operation of the SMC.

Values are:

Traditional -- Generate galvos command waveforms in the traditional

Mark/Jump mode along with the appropriate delays.

ScanPack – Generate galvo commands using Cambridge Technology’s
proprietary ScanPack algorithms

XML Example: <InsGenMode>ScanPack</InsGenMode>

MicroStepMode STR If InsGenMode is set to Traditional, this defines how the calculated

micro-step values are delivered to the output stage. Values are:

ISR – Output rate timing is governed by the Mark/Jump speed

command update rate value which is regulated using a timed interrupt

service routine if ISRGenMode is set to Program.

Free – Output values are calculated as quickly as possible and placed in

an output FIFO for consumption at a rate govered by the XY2-100 or

GSBus frame sync.

XML Example: <MicroStepMode>ISR</MicroStepMode>

ISRGenMode STR If MicroStepMode is set to ISR, this defines the rate the micro-step

values are delivered to the output stage. Values are:

Program – Output rate timing is governed by the Mark/Jump speed

command update rate value.

FrameSync – Output values are calculated and consumed at a rate

govered by the XY2-100 or GSBus frame sync.

XML Example: <ISRGenMode>Program</ISRGenMode>

RTCCompatibility BOOL If True, the X axis output of the Correction table calculation is delivered

to the Y Galvo axis, and the Y output value is delivered ot the X Galvo

axis. This results in a 90 degree coordinate system rotation in the

counter-clockwise direction which makes it compatible with Scanlab’s
RTC and scan-head conventions.

XML Example: <RTCCompatibility>True</RTCCompatibility>

InitPosition U16 Commands the galvos to jump to the position specified. This command

is executed before StartupJob is processed. If this command is not

present, then a jump to 0,0,0 will be done.

Session API

1040-0012 Revision 57

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

XML Example: <InitPosition> 30000; 30000; 0</InitPosition>

StartupJob STR Name of a locally stored job to run after the controller boots up. Jobs

can be Rev 1.0 style (.wlb), Rev 2.0 style (.job), or ScanMaster style (.lsj)

XML Example: <StartupJob>HWInit.job</StartupJob>

NOTE: .lsj style jobs that have human-interaction commands should not

be used as a startup job as host-based dialog-box support will not

necessarily be present.

ExtPauseControl STR This permits the specification of a set of external digital inputs that can

cause the SMC to pause vector processing. Multiple pins along with a

polarity setting may be specified which are evaluated in a logical OR

configuration.

XML Example:

 <ExtPauseControl>

 <Config pin="1" state="0" />

 </ExtPauseControl>

Pin numbering corresponds to the follow table:

0 AUX_START_ISO

4-1 GPI[4-1]_ISO

5 START

6 ABORT

13-7 LASER_STAT[6-0]

31-16 AUX_DIN[15-0]

DigitalIOPolarity HEX The polarity of digital inputs and outputs can be changed in sub-groups

as needed to make the XML and ScanScript job commands reflect a

more natural signal control scheme. Setting the bit inverts the natural

polarity of the signal. For optically isolated inputs, the natural state is

asserted if open. For outputs, the signal naturally goes low if asserted.

Both situations can be referred to as using negative logic.

XML Example: DigitalIOPolarity>0x7f1f</DigitalIOPolarity>

Bit position assignments are in the following table:

0 AUX_ABORT

1 START

Session API

1040-0012 Revision 58

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

2 AUX_START_ISO

3 AUX_GPI[4-1]_ISO

4 EXT_AUX_GPI[15-0]

8 AUX_BUSY

9 AUX_READY

10 AUX_LASING

11 AUX_JOBACTIVE

12 LASER_STAT[6-0]

13 AUX_GPO[4-1]

14 EXT_AUX_GPO[15-0]

SyncMasterEnabl

ed

BOOL If true, enables SyncMaster functionality in the SMC. This feature is

further regulated by licensing. Contact Cambridge Technology technical

support for additional requirements

XML Example: <SyncMasterEnabled>true</SyncMasterEnabled>

EnableZCompens

ation

BOOL If true, geometric compensation is applied to the XY coordinates as Z is

varied in the job data. This keeps the geometry of the marking area

accurate as focus is adjusted to mark on 3D objects. Proper behavior of

this compensation depends on accurate geometry being specified in the

lens correction table file.

If false, no geometric compensations are applied which results in a de-

focused spot as Z is varied in the job data.

XML Example: < EnableZCompensation >false</ EnableZCompensation

>

Data N/A End Controller Configuration file Data

</Data>

6.3.3 LASER CONFIGURATION

The Laser Configuration file defines the properties of the laser being used with the SMC.

Session API

1040-0012 Revision 59

The values in the Controller Configuration file are normally set by the integrator and are not intended

to be altered by a marking application.

See also requestFixedData and sendFixedData.

Laser Configuration Data: Header and Host Application Initialization Settings

Table 12 - LASER CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Data N/A Laser Configuration file identifier and revision

<Data type='LaserConfigData' rev='3.1'>

LsrName STR The name of the laser

XML Example: <LsrName>IPC002</LsrName>

LsrType U16 Application definable value to identify a laser type. Laser type

values of 100 or greater are intended for use with pulse-width

modulation lasers such as CO2 lasers. With these lasers, the

pulse width duty cycle will be scaled according to the laser

correction table.

XML Example: <LsrType>1</LsrType>

FixedFreq BOOL Laser is only capable of a fixed frequency setting (true) or

capable of variable frequency settings (false)

XML Example: <FixedFreq>true</FixedFreq>

FixedPW BOOL Laser is only capable of a fixed pulse width setting (true) or

capable of variable pulse width settings (false)

XML Example: <FixedPW>true</FixedPW>

FixedWatts BOOL Laser is only capable of a fixed output power setting (true) or

capable of variable output power settings (false)

XML Example: <FixedWatts>true</FixedWatts>

WattsUnits BOOL Laser power units are in Watts (true) or % duty-cycle (false)

XML Example: <WattsUnits>true</WattsUnits>

Pulse U16 Pulse width range supported by the laser (in µsecs)

XML Example: <Pulse min='2' max='65535'/>

Session API

1040-0012 Revision 60

Table 12 - LASER CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Bits U16 Binary value range for lasers with digital power control

XML Example: <Bits min='0' max='255'/>

ExtPwrCtrl BOOL Laser power is controllable via an external knob (true)

XML Example: <ExtPwrCtrl>false</ExtPwrCtrl>

UseExtPwrCtrl BOOL Application is configured to use external power control (true)

XML Example: <UseExtPwrCtrl>false</UseExtPwrCtrl>

VisPtr BOOL Laser has a visible pointer integrated into it (true)

XML Example: <VisPtr>false</VisPtr>

Duty U16 Duty cycle range of the laser pulses (%)

XML Example: <Duty min='1' max='90'/>

Freq U16 Pulse frequency range sustainable by the laser (KHz)

XML Example: <Freq min='1' max='250'/>

Watts U16 Wattage range producible by the laser

XML Example: <Watts min='1' max='15'/>

Volts U16 Analog power level voltage range sustainable by the laser; the

SMC is capable of 0-10 Volts output

XML Example: <Volts min='1' max='10'/>

Interlock STR The name of a file on the host platform that contains

instructions on how to clear an interlock break

XML Example: <Interlock>IPCIntlocks.txt</Interlock>

Laser Configuration File: Hardware Initialization Settings

The following tables contain the hardware initialization settings for the Laser Configuration file.

Session API

1040-0012 Revision 61

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserModeConfig U16 Set the laser configuration using a bit mask encoded as shown in the

following list. Note that this command will override other

commands that may set individual bits intended for this control

word.

Bit Value definitions are provided in the table on the next page.

Name Hex Bit

Value

Definition

LASER_GATE

polarity

0x0001 0=active high,

1=active low

LASER_POINTER

polarity

0x0002 0=active high,

1=active low

Laser Sync Mode

Bit 0

0x0004 See notes below.

LASER_MOD1

polarity

0x0008 0=active high,

1=active low

LASER_MOD2

polarity

0x0010 0=active high,

1=active low

LASER_MOD3

polarity

0x0020 0=active high,

1=active low

LASER_ENABLE

polarity

0x0040 0=active high,

1=active low

LASER_DOUT

polarity

0x0080 0=active high,

1=active low

Laser activate 0x0100 1=activate (enable) laser

 output signals

Session API

1040-0012 Revision 62

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Laser Power Port

mode

0x0200 (Obsolete – 7-bit mode is no longer

supported)

Set the mode of the digital

laser power port

0=8-bit mode,

1=7-bit mode (LSB used as strobe)

LASER_POINTER

configuration

0x0800

&

0x0400

Sets the mode of operation of

LASER_POINTER

0 – LASER_POINTER == NOT

LASER_GATE

1 - LASER_POINTER == LASER_GATE &

NOT LasersEnabled

2 - LASER_POINTER == NOT

LasersEnabled

3 - LASER_POINTER ==

Asserted all of the time

Laser Power Port 0x1000 0=8-bit digital power port,

1=analog output A1

LASER_GATE

configuration

0x2000 0=Gating signal,

1=Modulation signal if 8-bit digital

 power port bit 7 is also set

Session API

1040-0012 Revision 63

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LASER_GATE

inhibit

0x4000 0=normal operation,

1=LASER_GATE is suppressed

 when the laser is turned on but

 the modulation signal is still

 emitted. Use in synchronous

 laser operation during

 JumpAndFireList commands.

Laser Sync Mode

Bit 1

0x8000 See notes below.

XML Example: <LaserModeConfig>0x140</LaserModeConfig>

Notes on Laser Sync Mode:

Laser Sync Mode bits [1 – 0] encode the laser synchronization mode

of the SMC according to the following table:

0

=

Asynchronous modulation. The laser modulation is discontinuous,

switching between the background modulation and the lasing

modulation coincident with the LASER_GATE signal

1

=

Synchronous to the modulation signal on LASER_MOD3.

LASER_MOD3 takes its modulation settings from the background

settings for LASER_MOD1. The background signal for LASER_MOD1

and LASER_MOD2 is set for no modulation. In this mode, the

LASER_GATE and subsequent LASER_MOD1 and LASER_MOD2 timing

is synchronized to the rising edge of pulses on LASER_MOD3

2

=

Synchronous to the free-running modulation of LASER_MOD2. In this

mode the LASER_GATE signal is synchronized to the falling edge of

LASER_MOD2. Both LASER_MOD1 and LASER_MOD2 are free-running

according to the LaserPulse settings defined for them.

Session API

1040-0012 Revision 64

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

3

=

Synchronous to the external signal source received on LASER_STAT6.

In this mode, the LASER_GATE and subsequent LASER_MOD1 and

LASER_MOD2 timing is synchronized to the rising edge of pulses

received on LASER_STAT6.

 LaserTiming U16 The number of 20ns intervals that make up a laser timing "tick"

XML Example: <LaserTiming>50</LaserTiming>

This example produces a timing resolution of 1usec meaning that

laser modulation signals can be specified with a resolution of 1usec.

The minimum LaserTiming value is 1 (20nsec).

LaserEnableDelay U16 The time required (in milliseconds) for enabling the laser prior to

actual use; sets the time that the signal LASER_ENABLE is asserted

prior to a marking operation.

XML Example: <LaserEnableDelay>10</LaserEnableDelay>

LaserEnableTimeout U16 The time (in milliseconds) that the signal LASER_ENABLE will remain

asserted after a marking operation. If a subsequent marking

operation is started prior to the expiration of this time, then

LASER_ENABLE will remain asserted and the marking operation will

begin immediately without the cost of another LaserEnableDelay.

XML Example: <LaserEnableTimeout>20</LaserEnableTimeout>

LaserModDelay U16 The time (in µsecs) from the assertion of LASER_GATE to the

emission of laser pulses

XML Example: <LaserModDelay>20</LaserModDelay>

LaserFPK I16 (µsec) Sets the ‘position' of the LASER_MOD3 signal relative to the
LASER_GATE signal, and the ‘width' of the LASER_MOD3 pulse

XML Example: <LaserFPK position='0' width='10'/>

LaserStandby U16 (µsec) Sets the idle or non-lasing state modulation characteristics

(pulse width and period) of the LASER_MOD1 and LASER_MOD2

signals. The ‘period' value must be the same for both lasers

XML Example: <LaserStandby laser='1' width='1' period='200'/>

XML Example: <LaserStandby laser='2' width='1' period='200'/>

Session API

1040-0012 Revision 65

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserPowerDelay U16

The time required (in milliseconds) after laser power is changed

until the laser power has settled. Used when constructing jobs that

manipulate the laser power.

XML Example: <LaserPowerDelay>100</LaserPowerDelay>

InitAnalog U16

Sets initial values for the analog output ports.

XML Example: <InitAnalog port='0' value='50' />

port = 0 is LASER_ANALOG1 and port = 1 is LASER_ANALOG2

value ranges between 0 - 4095

InitDigital U16

Sets initial values for the digital output ports.

XML Example: <InitDigital port='102' value='128' />

port = 102 is the LASER_DATA port

value ranges between 0 - 255

InitLaser BOOL

(Reserved for future use). If set, use the settings specified in the

tags InitType, InitStrDelim, InitStrEOL, InitStrings, DeinitStrings, to

initialize the laser using a serial port connection.

XML Example: <InitLaser>false</InitLaser>

InitType U16

(Reserved for future use). Laser communications type: 0 = RS-232

Serial, 1 = Ethernet

XML Example: <InitType>0</InitType>

InitStrDelim CHR

(Reserved for future use). Delimiter character separating command

and argument tokens in the InitString.

XML Example: <InitStrDelim>","</InitStrDelim>

InitStrEOL CHR

(Reserved for future use). Line termination character used by the

laser command interpreter.

XML Example: <InitStrEOL>"\n"</InitStrEOL>

Session API

1040-0012 Revision 66

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

InitStrings STR

(Reserved for future use). A list of initialization strings to be sent to

the laser. The list may be arbitrarily long.

XML Example:

 <InitStrings>

 <InitString>ab</InitString>

 <InitString>cd</InitString>

 <InitString>ef</InitString>

 </InitStrings>

DeinitStrings STR

(Reserved for future use). A list of de-initialization strings to be sent

to the laser. The list may be arbitrarily long.

XML Example:

 <DeinitStrings>

 <DeinitString>zy</DeinitString>

 <DeinitString>xw</DeinitString>

 <DeinitString>vu</DeinitString>

 </DeinitStrings>

CorrTable

A list of laser power linearization values. Laser power has a logical

range of 0-255 and as a power change is requested, the logical

power value is used to index this table and the selected entry is

used as the actual "corrected" value. In the case of laser types 100

and greater, the values represent a duty-cycle value where the 0

represents 0% duty cycle and 255 represent 100% duty-cycle.

XML Example:

 <CorrTable>

 <Entry>0</Entry>

 <Entry>1</Entry>

 . . .

 <Entry>255</Entry>

 </CorrTable>

Session API

1040-0012 Revision 67

6.3.4 LENS CONFIGURATION

The Lens Configuration file defines the properties of the lens being used with the SMC.

The values in the Lens Configuration file are normally set by the integrator and are not intended to

be altered by a marking application.

See also requestFixedData and sendFixedData.

Lens Configuration Data: Header and Host Application Initialization Settings

The following table contains the header and host application initialization settings for the Lens

Configuration file.

Note: The host application initialization settings are not required or used by the hardware. They are

provided in the following table for the convenience of host application user parameter initialization.

Table 14 - LENS CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Data N/A LensConfigData identifier and revision

<Data type='LensConfigData' rev='3.0'>

LensNam

e

STR Used by the head integrator to identify a particular lens model.

XML Example: <LensName>S4LFT0163</LensName>

CalFlag BOOL Used by an application to indicate that this lens can be calibrated.

XML Example: <CalFlag>false</CalFlag>

ZMode U16 Specifies the Z-axis operational mode:

Name Value Description

2D 0 No Z-axis is present in the system and only X and Y

vector

 data is used.

3D 1 Z-axis is present and the Z position is the Z-axis job data

adjusted by the interpolated value from the Z-axis

component of the currently active correction table.

The Z-axis moves smoothly to the target position over

the

Session API

1040-0012 Revision 68

Table 14 - LENS CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

same time period it takes to move to the X-Y target

position.

XML Example: <ZMode>0</ZMode>

FocalLen U32 Focal length of the lens (mm)

XML Example: <FocalLen>163</FocalLen>

Aperture U32 Laser beam diameter entering the lens (mm)

XML Example: <Aperture>15</Aperture>

Lens Configuration Data: Hardware Initialization Settings

The following tables contain the hardware initialization settings for the Lens Configuration file.

Note: The Tbl{1,2,3,4} offset, gain and rotation factors are intended to be used by the integrator to

correct for system alignment issues and for the effects of the different wavelengths of light used for

marking (table 1) and pointing (table 2). User-level adjustments to the imaging field are performed

through the use of The User Configuration Table. The order of application of the factors is as follows:

Session API

1040-0012 Revision 69

Table 15 - LENS CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Tbl1XOff I32 X-axis offset to be applied to correction table 1 (bits)

XML Example: <Tbl1XOff>0</Tbl1XOff>

Tbl1YOff I32 Y-axis offset to be applied to correction table 1 (bits)

XML Example: <Tbl1YOff>0</Tbl1YOff>

Tbl1XGain FLT X-axis gain to be applied to correction table 1

XML Example: <Tbl1XGain>1.0</Tbl1XGain>

Tbl1YGain FLT Y-axis gain to be applied to correction table 1

XML Example: <Tbl1YGain>1.0</Tbl1YGain>

Tbl1Rotation FLT Field rotation to be applied to correction table 1 (degrees)

XML Example: <Tbl1Rotation>0.0</Tbl1Rotation>

Tbl2XOff I32 X-axis offset to be applied to correction table 2 (bits)

XML Example: <Tbl2XOff>0</Tbl2XOff>

Tbl2YOff I32 Y-axis offset to be applied to correction table 2 (bits)

XML Example: <Tbl2YOff>0</Tbl2YOff>

Tbl2XGain FLT X-axis gain to be applied to correction table 2

XML Example: <Tbl2XGain>1.0</Tbl2XGain>

Tbl2YGain FLT Y-axis gain to be applied to correction table 2

XML Example: <Tbl2YGain>1.0</Tbl2YGain>

Tbl2Rotation FLT Field rotation to be applied to correction table 2

XML Example: <Tbl2Rotation>0.0</Tbl2Rotation>

Tbl3XOff I32 X-axis offset to be applied to correction table 3 (bits)

XML Example: <Tbl3XOff>0</Tbl3XOff>

Tbl3YOff I32 Y-axis offset to be applied to correction table 3 (bits)

XML Example: <Tbl3YOff>0</Tbl3YOff>

Tbl3XGain FLT X-axis gain to be applied to correction table 3

XML Example: <Tbl3XGain>1.0</Tbl3XGain>

Session API

1040-0012 Revision 70

Table 15 - LENS CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Tbl3YGain FLT Y-axis gain to be applied to correction table 3

XML Example: <Tbl3YGain>1.0</Tbl3YGain>

Tbl3Rotation FLT Field rotation to be applied to correction table 3

XML Example: <Tbl3Rotation>0.0</Tbl3Rotation>

Tbl4XOff I32 X-axis offset to be applied to correction table 4 (bits)

XML Example: <Tbl4XOff>0</Tbl4XOff>

Tbl4YOff I32 Y-axis offset to be applied to correction table 4 (bits)

XML Example: <Tbl4YOff>0</Tbl4YOff>

Tbl4XGain FLT X-axis gain to be applied to correction table 4

XML Example: <Tbl4XGain>1.0</Tbl4XGain>

Tbl4YGain FLT Y-axis gain to be applied to correction table 4

XML Example: <Tbl4YGain>1.0</Tbl4YGain>

Tbl4Rotation FLT Field rotation to be applied to correction table 4

XML Example: <Tbl4Rotation>0.0</Tbl4Rotation>

Data N/A End LensConfigData

</Data>

6.3.5 CORRECTION TABLES

The correction table contains values to adjust laser location based on the lens distortion and laser

galvo configuration.

Note: Correction table data may be changed by an application, but it is normally not. This data is

usually provided by a marking head integrator using the characteristics of the lens and laser galvo

configuration. Correction table data may also be sent to the SMC using the sendStreamData method.

In this case, however, the data is not persistent and will be lost after session logout or reboot.

See also requestFixedData and sendFixedData.

Session API

1040-0012 Revision 71

Correction Table Parametric Information

The following table contains the correction table parametric information, which is used for table

design and manipulation.

Note: The following table contains groups of related parameters in contiguous rows. Each group

begins with and ends with a bolded XML tag (e.g., ReferenceInformation).

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

Data N/A CorrTableData identifier

<Data type='CorrTableData'

rev='2.2'>

TableParams N/A Begin TableParams section

 <TableParams>

 ReferenceInformation N/A Begin ReferenceInformation Section

 <ReferenceInformation>

 Description STR Textual description of scan head

configuration

XML Example:

<Description>ProSeries-1 14mm with

Linos 163mm EFL lens</Description>

 SourceScanHeadID STR Internal Cambridge Technology use

XML Example:

<SourceScanHeadID/>

 SourceLensID STR Internal Cambridge Technology use

XML Example: <SourceLensID/>

 SourceSpacerID STR Internal Cambridge Technology use

XML Example: <SourceSpacerID/>

 TableRevision STR For customer reference

XML Example:

<TableRevision>A</TableRevision>

Session API

1040-0012 Revision 72

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 TableCreationDate STR For customer reference

XML Example:

<TableCreationDate>12/31/2012

8:19 PM</TableCreationDate>

 HeadType STR Internal Cambridge Technology use

XML Example: <HeadType>LXP-

10</HeadType>

 ReferenceInformation N/A End ReferenceInformation Section

 </ReferenceInformation>

 Configuration N/A Begin Configuration Section

 <Configuration>

 ThirdAxisPresent BOOL If true, this is a three-axis system

with dynamic focus

XML Example:

<ThirdAxisPresent>false</ThirdAxisP

resent>

 PreserveCalFactors BOOL If true, adjust table contents to

preserve CalFactor values in
mmToActuatorSpaceTransform

XML Example:

<PreserveCalFactors>true</Preserve

CalFactors>

 CalibrateRectangularField BOOL If true, the field is calibrated as a

rectangle

XML Example:

<CalibrateRectangularField>false</C

alibrateRectangularField>

Session API

1040-0012 Revision 73

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 TableDataHasBeenCorrectedFromDesign BOOL If true the table contents reflect

measurement-based iterations, not

just theoretical content.

XML Example:

<TableDataHasBeenCorrectedFromD

esign>true</TableDataHasBeenCorre

ctedFromDesign>

 ActuatorUnits STR String enumeration represting the

galvo (actuator) command units:

bits-16: -32768 to 32767 (EC1000

backwards compatibility)

bits-20: -524288 to 524287 (EC1000

20-bit enhanced mode backwards

compatibility)

bits-24: -8388608 to 8388607 (SMC

Standard)

field-fraction: -0.5 to 0.5 (Cambridge

Technology UAPI for the SC500)

radians: galvo mechanical angle in

radians (ScanPack direct)

XML Example:

<ActuatorUnits>bits-

24</ActuatorUnits>

 RTCCompatibleFormat BOOL Table data is organized to support

RTC Compatibility mode of the SMC.

XML Example: <

RTCCompatibleFormat >false

</RTCCompatibleFormat >

 Configuration N/A End Configuration Section

 </Configuration>

Session API

1040-0012 Revision 74

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 DesignErrorComponents N/A Begin DesignErrorComponents

Section

 <DesignErrorComponents>

 Mirrors BOOL If true, mirror (pincushion) error

compensation is/was calculated and

inserted into the table.

XML Example:

<Mirrors>true</Mirrors>

 Lens BOOL If true, lens distortion error

compensation is/was calculated and

inserted into the table

XML Example: <Lens>true</Lens>

 DistortionFactor FLT Strength of lens distortion

theoretical calculation

XML Example: <DistortionFactor>

-2.0</DistortionFactor>

 PincushionFactor FLT Strength of pincushion theoretical

calculation

XML Example:

<PincushionFactor>1.0

</PincushionFactor>

 DesignErrorComponents N/A End DesignErrorComponents Section

 </DesignErrorComponents>

 HeadParameters N/A Begin HeadParameters Section.

 <HeadParameters>

Session API

1040-0012 Revision 75

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 XGalvoMechHalfAngle-deg FLT X-axis mechanical half-angle

XML Example:

<XGalvoMechHalfAngle-

deg>11.0</XGalvoMechHalfAngle-

deg>

 YGalvoMechHalfAngle-deg FLT Y-axis mechanical half-angle

XML Example:

<YGalvoMechHalfAngle-

deg>11.0</YGalvoMechHalfAngle-

deg>

 XtoYMirrorDist-mm FLT X - Y mirror face-to-face spacing

XML Example: <XtoYMirrorDist-

mm>35.0</XtoYMirrorDist-mm>

 YMirrorToRefSurfaceDist-mm FLT Y mirror to bottom of the head

reference surface distance

XML Example:

<YMirrorToRefSurfaceDist-

mm>75.0</YMirrorToRefSurfaceDist-

mm>

 RefSurfaceToWorkSurfaceDist-mm FLT Bottom of the head reference

surface to work surface distance

XML Example:

<RefSurfaceToWorkSurfaceDist-

mm>192.0</RefSurfaceToWorkSurfa

ceDist- mm>

 LensFocalLength-mm FLT Design focal length of the F-Theta

lens if used

XML Example: <LensFocalLength-

mm>163.0</LensFocalLength-mm>

Session API

1040-0012 Revision 76

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 LensMaxMechHalfAngle-deg FLT Maximum mechanical half-angle of

lens entrance pupil. A lens property.

XML Example:

<LensMaxMechHalfAngle-

deg>15.0</LensMaxMechHalfAngle-

deg>

 XMirrorToObjectiveDist-mm FLT Distance from X mirror center to

objective in three-axis systems

XML Example:

<XMirrorToObjectiveDist-

mm>225.0</XMirrorToObjectiveDist-

mm>

 E1E2Spacing FLT Nominal distance between Objective

and DFM lens for the design working

distance/ field-size

XML Example:

<E1E2Spacing>65.0</E1E2Spacing>

 ZCalFactorCoeffs N/A Begin ZCalFactorCoeffs Section.

Z Calibration Factor Coefficients used

to calculate the ZCal Factor as a

function of
RefSurfaceToWorkSurfaceDist-mm

 <ZCalFactorCoeffs>

 An FLT As many entries as required to

properly model the cal factor

XML Example: <An>2456.34</An>

XML Example: <An>-21.60</An>

 ZCalFactorCoeffs N/A End ZCalFactorCoeffs Section.

 </ZCalFactorCoeffs>

Session API

1040-0012 Revision 77

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 e1e2Coeffs N/A Begin e1e2Coeffs Section.

e1e2 spacing coefficients used to

calculate the objective to DFM lens

spacing as a function of

RefSurfaceToWorkSurfaceDist-mm.

 <e1e2Coeffs>

 An FLT As many entries as required to

properly model the e1e2 spacing

XML Example: <An>101.306</An>

XML Example: <An>-.4079</An>

 e1e2Coeffs N/A End e1e2Coeffs Section.

 </e1e2Coeffs>

 HeadParameters N/A End HeadParameters Section.

 </HeadParameters>

 mmToActuatorSpaceTransform N/A Begin

mmToActuatorSpaceTransform

Section.

The data in the section represents a

3-axis transform that can be used to

convert mm units into galvo

command units.

 <mmToActuatorSpaceTransform>

 Xx FLT Represents the conversion factor for

the X-Axis in units of actuator-units

per millimeter.

XML Example: <Xx>551.48</Xx>

 Yx FLT (Reserved for future use)

XML Example: <Yx>0</Yx>

Session API

1040-0012 Revision 78

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 Zx FLT (Reserved for future use)

XML Example: <Zx>0</Zx>

 Dx FLT (Reserved for future use)

XML Example: <Dx>0</Dx>

 Xy FLT (Reserved for future use)

XML Example: <Xy>0</Xy>

 Yy FLT Represents the conversion factor for

the Y-Axis in units of actuator-units

per millimeter.

XML Example: <Yy>551.48</Yy>

 Zy FLT (Reserved for future use)

XML Example: <Zy>0</Zy>

 Dy FLT (Reserved for future use)

XML Example: <Dy>0</Dy>

 Xz FLT (Reserved for future use)

XML Example: <Xz>0</Xz>

 Yz FLT (Reserved for future use)

XML Example: <Yz>0</Yz>

 Zz FLT Represents the conversion factor for

the Z-Axis in units of actuator-units

per millimeter.

XML Example: <Zz>1100</Zz>

 Dz FLT (Reserved for future use)

XML Example: <Dz>0</Dz>

Session API

1040-0012 Revision 79

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 mmToActuatorSpaceTransform N/A End mmToActuatorSpaceTransform

section.

 </mmToActuatorSpaceTransform>

 TableStructure

N/A

Begin TableStructure Section.

Defines how to interpret the table

data

XML Example: <TableStructure>

 XActuatorMin

FLT

Minimum ideal X actuator table

value

XML Example: <XActuatorMin>-

32768</XActuatorMin

 XActuatorStride

FLT

Spacing between X actuator ideal

values

XML Example:

<XActuatorStride>1024</XActuatorSt

ride>

 X-NumCols

I32

Number of columns for the X-axis

XML Example: <X-NumCols>65</X-

NumCols>

 YActuatorMin

FLT

Minimum ideal Y actuator table value

XML Example: <YActuatorMin>-

32768</YActuatorMin>

 YActuatorStride

FLT

Spacing between Y actuator ideal

values

XML Example:

<YActuatorStride>1024</YActuatorSt

ride>

Session API

1040-0012 Revision 80

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 Y-NumRows

I32

Number of rows for the Y-axis

XML Example: <Y-NumRows>65</Y-

NumRows>

 ZActuatorMin

FLT

Minimum ideal Z actuator table value

XML Example: <ZActuatorMin>-

32768</ZActuatorMin>

 ZActuatorStride

FLT

Spacing between Z actuator ideal

values

XML Example:

<ZActuatorStride>1024</ZActuatorSt

ride>

 Z-NumLayers

I32

Number of layers for the Z-axis

XML Example: <Z-NumLayers>1</Z-

NumLayers>

 TableStructure
N/A

End TableStructure Section

 </TableStructure>

TableParams N/A End TableParams section

 </TableParams>

Correction Table Hardware Initialization Settings

The following tables contain the actual correction values for the Correction Table. At run-time, the

ideal command value is used to index the table and each value is added to the ideal command to

create a “corrected” command which is delivered to the galvos. Bi-linear interpolation between the

four closest table entries is used to compute corrections when the ideal command does not fall on a

table entry.

Session API

1040-0012 Revision 81

Table 17 - CORRECTION TABLE HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

x-axis FLT X-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the X-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant)

traversing X first, to the highest positive coordinate (upper right

Cartesian quadrant).

XML Example: <x-axis>203.01; 195.24; 161.05; …; -174.56; -190.21</x-

axis>

y-axis FLT Y-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the Y-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant)

traversing X first, to the highest positive coordinate (upper right

Cartesian quadrant).

XML Example: <y-axis>337.98; 323.63; 288.23; … ; -288.98; -

323.04</y-axis>

z-axis FLT Z-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the Z-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant)

traversing X first, to the highest positive coordinate (upper right

Cartesian quadrant).

XML Example: <z-axis>2.13; 2.14; 1.08 ;… ; 4.67; 5.32</z-axis>

Supplemental

Layers

N/A Begin SupplementalLayers section.

Additional Correction table layers in support of full 3D correction table

usage (ScanPack)

XML Example: <SupplementalLayers>

Layer N/A Begin Layer section.

Correction table layer data at a specific ZOffset in mm from the Z=0

plane. A positive ZOffset is above the Z-0 plane.

XML Example: <Layer ZOffset='10.0'>

Session API

1040-0012 Revision 82

Table 17 - CORRECTION TABLE HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

x-axis FLT X-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the X-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant) to the

highest positive coordinate (upper right Cartesian quadrant).

XML Example: <x-axis>203.01; 195.24; 161.05; …; -174.56; -

190.21</x-axis>

y-axis FLT Y-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the Y-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant) to the

highest positive coordinate (upper right Cartesian quadrant).

XML Example: <y-axis>337.98; 323.63; 288.23; …; -288.98; -323.04</y-

axis>

z-axis FLT Z-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-

point values in actuator-units defining the Z-axis correction starting in

the lowest negative coordinate (lower left Cartesian quadrant) to the

highest positive coordinate (upper right Cartesian quadrant).

XML Example: <z-axis>2.13; 2.14; 1.08; … ; 4.67; 5.32</z-axis>

Layer N/A End Layer Section

XML Example: </Layer>

Supplemental

Layers

N/A End SupplementalLayers Section

XML Example: </SupplementalLayers>

Data N/A End CorrTable Data

XML Example: </Data>

Session API

1040-0012 Revision 83

6.3.6 USER CONFIGURATION

The data in the User Configuration file is used by the marking application as needed. (The values in

the User Configuration file are completely under the control of a marking application.)

Note: The offset, gain and rotation variables are independent of, and additive to, the equivalent lens

correction table adjustment factor defined in the Lens Configuration file.

Note: The general purpose user variables can be used to store any information that a marking

application wishes to make persistent across reboots of the controller. It is up to the application to

interpret the UserVar data as required.

User Configuration Data: Header and Host Application Initialization

The following table contains the header and host application initialization settings of the User

Configuration file.

Note: In the User Configuration file, the host application initialization settings are optional and are

not used by the hardware.

Table 18 - USER CONFIGURATION DATA SETTINGS: HEADER AND HOST APPLICATION INITIALIZATION

XML Tag Type Description/XML Example

Data N/A UserConfigData identifier

<Data type='UserConfigData' rev='1.0'>

UserVar1 ANY General purpose user variable

XML Example: <UserVar1>ABC</UserVar1>

UserVar2 ANY General purpose user variable

XML Example: <UserVar2>123</UserVar2>

UserVar3 ANY General purpose user variable

XML Example: <UserVar3>4.56</UserVar3>

UserVar4 ANY General purpose user variable

XML Example: <UserVar4>true</UserVar4>

UserVar5 ANY General purpose user variable

XML Example: <UserVar5>false</UserVar5>

Session API

1040-0012 Revision 84

Table 18 - USER CONFIGURATION DATA SETTINGS: HEADER AND HOST APPLICATION INITIALIZATION

XML Tag Type Description/XML Example

UserVar6 ANY General purpose user variable

XML Example: <UserVar6>'text'</UserVar6>

User Configuration Data: Hardware Initialization Settings

The following table contains the hardware initialization settings for the User Configuration file.

Note: In the User Configuration file, the hardware initialization settings are required.

Table 19 - USER CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

XOff FLT Offset to be applied to all X-Axis coordinates (bits, or mm if specified in

fractional format)

XML Example: <XOff>0</XOff>

YOff FLT Offset to be applied to all Y-Axis coordinates (bits, or mm if specified in

fractional format)

XML Example: <YOff>0</YOff>

ZOff FLT Offset to be applied to all Z-Axis coordinates (bits, or mm if specified in

fractional format)

XML Example: <ZOff>0</ZOff>

XGain FLT Gain factor to be applied to all X-axis coordinates

XML Example: <XGain>1.0</XGain>

YGain FLT Gain factor to be applied to all Y-axis coordinates

XML Example: <YGain>1.0</YGain>

Rotation FLT Rotation transformation to be applied to the X-Y field

XML Example: <Rotation>90.0</Rotation>

Data End UserConfigData

Session API

1040-0012 Revision 85

Table 19 - USER CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

</Data>

6.3.7 PERFORMANCE ADJUSTMENTS

The Performance Adjustments file contains values that are used to adjust job parameters while the

job is executing. This is of particular value when jobs are stored locally and adjustments need to be

made to compensate for laser degradation on a particular machine.

Note: The data in the User Configuration file is intended to be used by the marking application as

needed.

See also requestFixedData and sendFixedData.

Performance Adjustments Data Header

The following table contains the Performance Adjustments file header.

Table 20 - PERFORMANCE ADJUSTMENTS DATA HEADER

XML Tag Type Description/XML Example

Data N/A PerformanceMatrixData identifier

<Data type='PerformanceMatrixData' rev='2.0'>

Performance Adjustments Data: Hardware Initialization Settings

The following table contains the hardware initialization settings for the Performance Adjustments

table.

Session API

1040-0012 Revision 86

Table 21 - PERFORMANCE ADJUSTMENTS DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserPower FLT Scale factor to be applied to the laser power value specified in the

job

XML Example: <LaserPower>1.0</LaserPower>

PulseWidth FLT Scale factor to be applied to the laser pulse width specified in the

job

XML Example: <PulseWidth>1.0</PulseWidth>

Period FLT Scale factor to be applied to the laser pulse period specified in the

job

XML Example: <Period>1.0</Period>

MarkSpeed FLT Scale factor to be applied to the MarkSpeed specified in the job

XML Example: <MarkSpeed>1.0</MarkSpeed>

XOffset I16 Offset to be applied to all X coordinates (bits, or mm if specified in

fractional format)

XML Example: <XOffset>0</XOffset>

YOffset I16 Offset to be applied to all Y coordinates (bits, or mm if specified in

fractional format)

XML Example: <YOffset>0</YOffset>

ZOffset I16 Offset to be applied to all Z coordinates (bits, or mm if specified in

fractional format)

XML Example: <ZOffset>0</ZOffset>

Data End PerformanceMatrixData

</Data>

6.3.8 SERVO CONFIGURATION

The Servo Config file contains information about the tuning of the servo/galvo system. This file is

automatically generated for Lightning II galvo systems using the Firmware Loader utility. The

Session API

1040-0012 Revision 87

parameters are used by the SMC embedded ScanPack algorithms to model the dynamic behavior of

an attached scan-head.

 The data in the Servo Config file is critical to proper performance of the SMC and should not

be changed unless under the guidance of Cambridge Technology Applications Engineering.

See also requestFixedData and sendFixedData.

Servo Config Data

The following table contains the hardware initialization settings for the Servo Config file. There are

separate sections for each axis of a multi-axis system. This table describes entries for a single axis.

Table 22 - SERVO CONFIG DATA

XML Tag Type Description/XML Example

Data N/A ServoConfigData identifier

<Data type='ServoConfigData' rev='2.0'>

System_Dynamics N/A System_Dynamics section identifier

<System_Dynamics>

SERVO_PARAMS N/A Axis specific SERVO_PARAMS section identifier

 <SERVO_PARAMS>

AxisID STR Axis identifier. Options are “X”, “Y”, and “Z”

XML Example: <AxisID>X</AxisID>

CommandGain FLT Command gain of the servo system in radians/half-field

XML Example: <CommandGain>-0.174</CommandGain>

BandWidthHz FLT The servo/galvo bandwidth in Hz

XML Example: <BandWidthHz>4500.0</BandWidthHz>

Damping FLT Damping factor

XML Example: <Damping>0.8</Damping>

Session API

1040-0012 Revision 88

Table 22 - SERVO CONFIG DATA

XML Tag Type Description/XML Example

IntegratorBandWid

thHz

FLT Error integrator bandwidth in Hz

XML Example:

<IntegratorBandWidthHz>0.0</IntegratorBandWidthHz>

PositionFF FLT Positoin loop feed-forward factor

XML Example: <PositionFF>1.0</PositionFF>

VelocityFF FLT Velocity loop feed-forward factor

XML Example: <VelocityFF>0.4</VelocityFF>

AccelFF FLT Acceleration loop feed-forward factor

XML Example: <AccelFF>0.0</AccelFF>

FilterTimeSec FLT Roll-off filter time constant in seconds

XML Example: <FilterTimeSec>8.534e-5</FilterTimeSec>

MaxVelocity FLT Maximum velocity in radians/sec

XML Example: <MaxVelocity>220000.0</MaxVelocity>

MaxAccel FLT Maximum acceleration in radians/sec/sec

XML Example: <MaxAccel>147465.0</MaxAccel>

SERVO_PARAMS N/A End SERVO_PARAMS section

 </SERVO_PARAMS>

System_Dynamics N/A End System_Dynamics section

 </ System_Dynamics>

Data N/A End ServoConfigData

</Data>

Session API

1040-0012 Revision 89

6.4 MARKING JOB SPECIFICATION

The primary interface for interacting with the controller is the sendStreamData method. This method

streams data to the controller as fast as the network and buffering systems allow. Buffering is

distributed between the host operating system, the SMC operating system, the SMC control

software, and finally, the marking engine input FIFO.

sendStreamData is non-blocking in the sense that it returns as soon as the data is passed to the

downstream communications system for transfer to the target SMC. Once this method returns,

subsequent calls can be made to keep the data "pipeline" full with marking data. This technique

ensures continuous marking operation without pauses.

Job data passed to the SMC remains in vector format until it reaches the real-time marking engine

controller. Only then is it converted to time-domain command data and passed to the laser galvo

controllers.

6.4.1 JOB DATA TYPES

The streaming data interface can send several types of data:

1. JobData (standard) – This is data that represents a marking job using the XML-based job

definition language described in the next section. This job data is executed immediately in the

same sequence as it is sent through the interface.

2. JobData (structured) – This is data that uses XML constructs to group related job instructions

together into a segment that can be loaded to the board one time, and referred to multiple times

via a separate sequence definition. A sequence definition construct permits the ordering of

execution and iteration of pre-loaded segments.

3. CorrTableData – This data is in the same format at the correction table XML definition.

Correction table data sent this way does not persist through an SMC power cycle.

6.4.2 JOB DATA DEFINITION

Job data contains both action commands that direct the marking engine to perform specific

operations, and parametric data that affects how the SMC hardware behaves. Parameter commands

do not cause any action, but modify the behavior of subsequent action commands. To minimize the

number of XML identifier tags to express a job, the XML definition make use of two types of

constructs. All action commands use specific XML tag names to identify the action, followed by a

Session API

1040-0012 Revision 90

comma-separated list of argument values. The set tag is used with an attribute id to identify the

parameter followed by a comma- or semicolon-separated list of values.

In its simplest form, a streaming job packet is a well-formed XML document that is delimited with the

tag “Data”. For example, an empty job would look like:

<Data type='JobData' rev='2.0'></Data>

A more useful example of a simple job that draws a box would look like:

XML Text Description

<Data type='JobData' rev='2.0'> Job data type declaration

 <set id='JumpDelay'>150</set> The parameter 'JumpDelay' is set to 150µsec.

 <set id='MarkDelay'>150</set> The parameter 'MarkDelay' is set to 150µsec.

 <set id='PolyDelay'>50</set> The parameter 'PolyDelay' is set to 150µsec.

 <set id='LaserTiming'>50</set> Set the laser time base tick to 50 20nsec periods

(1µsec).

 <set id='LaserOnDelay'>75</set> The parameter 'LaserOnDelay' is set to 75 laser timing

ticks.

 <set id='LaserOffDelay'>100</set> The parameter 'LaserOffDelay' is set to 100 laser

timing ticks.

 <set id='LaserPulse'>1; 10; 20</set> Set the modulation of LASER_MOD1 to a pulse width

of 10 laser timing ticks with a period of 20 laser timing

ticks.

 <Set id='JumpSpeed'>10; 30</Set> The parameter 'JumpSpeed' is set to 30 bits per each

10µ sec update period.

 <Set id='MarkSpeed'>10; 10</Set> The parameter 'MarkSpeed' is set to 10 bits per each

10µ update period.

 <JumpAbs>-5000; -5000</JumpAbs> Move laser galvos to the absolute position -5000, -

5000 with the laser off

 <MarkAbs>-5000; 5000</MarkAbs> Move laser galvos to the absolute position -5000, 5000

with the laser on.

 <MarkAbs>5000; 5000</MarkAbs> Move laser galvos to the absolute position 5000, 5000

with the laser on.

Session API

1040-0012 Revision 91

XML Text Description

 <MarkAbs>5000; -5000</MarkAbs> Move laser galvos to the absolute position 5000, -5000

with the laser on.

 <MarkAbs>-5000; -5000</MarkAbs> Move laser galvos to the absolute position -5000, -

5000 with the laser on.

</Data> End job data

6.4.3 JOB TYPE SPECIFICATION

As shown in the following example, the job type is defined in the header section of the job XML,

which precedes the job commands.

XML Text Description

<Data type='JobData' rev='2.0'> Standard Job Data type declaration, streaming or

structured.

<Data type='CorrTableData' rev='2.2'> Correction Table data

See definitions in that section. A correction table

may be sent as a packet, but it is not persistent

through a SMC reboot.

6.5 JOB PARAMETERS AND COMMANDS

Jobs are made up of parameter definitions and action commands. Parameters are defined using the

Set tag. Multiple values for parameters are expressed in a comma-separated list. Commands are

represented by a keyword and one or more arguments in a list. Parameters and commands are

grouped by function in the following sections.

6.5.1 USER UNITS CONVERSION

Session API

1040-0012 Revision 92

ActuatorUnits

Description

Specifies the scanner bit resolution expectation of the job data. This

information is used to scale coordinate values to the 24-bit native

resolution required by the SMC

Syntax <set id='ActuatorUnits'>{STR unitsID}</set>

Example <set id='ActuatorUnits'>bits-16</set>

Arguments

unitsID Identifies a conversion ratio.

Value

range

bits-16 – coordinate values are assumed to be for a 16-bit

coordinate system. This is the default for backward

compatibility with the EC1000.

bits-20 – coordinate values are assumed to be for a 20-bit

coordinate system as used by the 20-bit version of the

EC1000.

bits-24 – coordinate values are assumed to be for a 24-bit

coordinate system as used by the SMC.

Units

Description

Specifies the units of the job coordinate data. It implicitly sets the

conversion ratio used to map a motion-related command values from the

user units to internally required “bits” units. This command uses the
current cal factors of the SMC as defined by the correction table file that

is loaded at boot time. These values may be over-ridden by using the

commands <set id='XYCalFactor'> and <set id='ZCalFactor'>.

This command affects the units of all motion commands that reference a

coordinate or offset.

Syntax <set id='Units'>{U16 unitsID}</set>

Example <set id='Units'>2</set>

Arguments unitsID Identifies a conversion ratio.

Session API

1040-0012 Revision 93

ActuatorUnits

Value

range

0 - bits (1:1); Note: This is the default value.

1 - mm (UserUnits * CalFactor)

2 - inch (UserUnits * 25.4 * CalFactor)

3 - mils ((UserUnits/1000) * 25.4 * CalFactor)

Note: In options 1, 2, and 3, UserUnits is the motion-

related command value.

XYCalFactor

Description

Sets the X- and Y-axis calibration factor used in converting coordinate

system units. Note that this command overrides the cal factors that are

read by the API from the correction table file during a session login.

Syntax <set id='XYCalFactor'>{FLT multiplier}</set>

Example <set id='XYCalFactor'>500</set>

Arguments

multiplier Used as a bits/millimeter multiplier in converting user

motion command units into the internally required “bits”
units. The actual ratio is defined per the <set id'=Units'>

command.

Value

range

The minimum value is 0.

The maximum value is the practical limit of the hardware.

ZCalFactor

Description

Sets the Z-axis calibration factor used in converting coordinate system

units. Note that this command overrides the cal factor that is read by the

API from the correction table file during a session login.

Syntax <set id='ZCalFactor'>{FLT multiplier}</set>

Example <set id='ZCalFactor'>125</set>

Session API

1040-0012 Revision 94

ZCalFactor

Arguments

multiplier Used as a bits/millimeter multiplier in converting user

motion command units into the internally required “bits”
units. The actual ratio is defined per the <set id'=Units'>

command.

Value

range

The minimum value is 0.

The maximum value is the practical limit of the hardware.

6.5.2 MOTION CONTROL PARAMETERS

CmdRangeCheckMode

Description Sets the behavior of the command range checking feature.

Syntax
<set id='CmdRangeCheckMode'>{U16 enable; U16 port; U16 value}1; 5;

1</set>

Example <set id='CmdRangeCheckMode'>1; 5; 1</set>

Arguments

enable Enable/disable checking

Value

range

0 – Disables checking

1 – Enables checking

port Digital output port to manipulate

Value

range

See WriteDigital.

value Port value to set if out of range

Value

range

See WriteDigital.

JumpDelay

Description Sets the delay used at the end of a jump command.

Session API

1040-0012 Revision 95

JumpDelay

Syntax <set id='JumpDelay'>{U16 duration}</set>

Example <set id='JumpDelay'>150</set>

Arguments

duratio

n

The length of time to delay (in µsecs)

Value

range

0 - 32767

JumpSpeed (Two argument syntax)

Description

Establishes the vector speed at which a jump is executed. The parameters

are normally derived from an application speed setting expressed as

mm/sec, bits/msec, or some other appropriate ratio.

Syntax <set id='JumpSpeed'>{U16 stepTime; FLT stepSize}</set>

Example <set id='JumpSpeed'>10; 30</set>

Arguments

stepTime The duration in µsecs between each micro-step. This is how

often the galvo position command is updated with an

incremental stepSize.

Value

range

10 - 65535

stepSize The distance traveled in bits for each micro-step. This value

can be an integer or fractional number. When a fractional

number is used, it is limited to 10-bit precision and the

maximum step size is reduced to 64.0.

Value

range

Integer: 1 – 65535 bits

Fractional: .001 - 64.0

JumpSpeed (Single argument syntax)

Description Establishes the vector speed at which a jump is executed.

Syntax <set id='JumpSpeed'>{FLT speed}</set>

Session API

1040-0012 Revision 96

JumpSpeed (Single argument syntax)

Example <set id='JumpSpeed'>10000</set>

Arguments

speed Jump vector speed; the argument is interpreted as a floating-

point vector speed in user-units/second. The update rate is

specified in the JumpStepTime parameter.

Value

range

The minimum value is >0.

The maximum value is the practical limit of the hardware.

JumpStepTime

Description

Sets the update interval to be used in defining the jumping speed when

the command

<set id='JumpSpeed'> is invoked with a single argument.

Syntax <set id='JumpStepTime'>{U16 value}</set>

Example <set id='JumpStepTime'>10</set>

Arguments

value JumpSpeed update interval (in µsecs). The default value is 10.

Value

range

The minimum value is 10.

The maximum value is the practical limit of the hardware.

MarkDelay

Description Sets the delay used at the end of a series of marks.

Syntax <set id='MarkDelay'>{U16 duration}</set>

Example <set id='MarkDelay'>150</set>

Arguments

durati

on

Length of time to delay (in µsecs)

Value

range

0 - 32767

Session API

1040-0012 Revision 97

MarkSpeed (Two argument syntax)

Description

Establishes the vector speed at which a mark is executed. The parameters

are normally derived from an application speed setting expressed as

mm/sec, bits/msec, or some other appropriate ratio.

Syntax <set id='MarkSpeed'>{U16 stepTime; FLT stepSize}</set>

Example <set id='MarkSpeed'>10; 30</set>

Arguments

stepTim

e

The duration in µsecs between each micro-step. This is how

often the galvo position command is updated with an

incremental stepSize.

Value

range

10 - 65535

stepSize The distance traveled in bits for each micro-step. This value

can be an integer or fractional number. When a fractional

number is used, it is limited to 10-bit precision and the

maximum step size is reduced to 64.0.

Value

range

Integer: 1 – 65535 bits

Fractional: .001 - 64.0

MarkSpeed (Single argument syntax)

Description Establishes the vector speed at which a mark is executed.

Syntax <set id='MarkSpeed'>{FLT speed}</set>

Example <set id='MarkSpeed'>5000.0</set>

Arguments

speed Mark vector speed; the argument is interpreted as a floating-

point vector speed in user-units/second. The update rate is

specified in the MarkStepTime parameter.

Value

range

The minimum value is >0.

The maximum value is the practical limit of the hardware.

Session API

1040-0012 Revision 98

MarkStepTime

Description
Sets the update interval to be used in defining the marking speed when the

command <set id='MarkSpeed'> is invoked with a single argument.

Syntax <set id='MarkStepTime'>{U16 value}</set>

Example <set id='MarkStepTime'>10</set>

Arguments

value MarkSpeed update interval (in µsecs). The default value is 10.

Value

range

The minimum value is 10.

The maximum value is the practical limit of the hardware.

PolyDelay

Description Set the delay to be used at the junction of two marks.

Syntax <set id='PolyDelay'>{U16 duration}</set>

Example <set id='PolyDelay'>150</set>

Arguments

duratio

n

The length of time (in µsecs) to delay between two sequential

mark vectors

Value

range

0 - 32767

VariJumpDelay

Description

Below a given jumpLengthLimit, the jump delay is linearly scaled down

from the JumpDelay value to the minimumDelay as the jump distance

approaches zero.

Syntax
<set id='VariJumpDelay'>{U16 minimumDelay; U16

jumpLengthLimit}</set>

Example <set id='VariJumpDelay'>50; 2000</set>

Arguments
minimumDelay Minimum length (in laser timing ticks) of a jump delay

Value range 0 - 65535

Session API

1040-0012 Revision 99

VariJumpDelay

jumpLengthLimi

t

Jump length threshold (in 1-bit user units) below

which the variable jump delay will be applied

Value range 1 - 65535

VariPolyDelayFlag

Description

Enables or disables the use of variable polygon delays. If variable polygon

delays are enabled, the PolyDelay value is adjusted proportional to the

angular change in the next segment of the poly-vector.

Syntax <set id='VariPolyDelayFlag'>{BOOL value}</set>

Example <set id='VariPolyDelayFlag'>true</set>

Arguments

value Variable polygon delay enabled state

Value

range

true (enabled)

false (disabled)

Comments

When this feature is enabled, the PolyDelay value is scaled proportionate

to the angle of the vertex. The scaling is according to a raised cosine

function as shown below:

2x

0

0° 180°90°

1x

Scale

factor(Ɵ) Ɵ

Session API

1040-0012 Revision 100

Wobble

Description

Allows varying line width during a Mark command. The marking vector is

modified with a circular repeating pattern defined by the param and

amplitude arguments.

Syntax <set id='Wobble'>{U16 param; FLT amplitude}</set>

Example <set id='Wobble'>250; 10</set>

Arguments

param Interpretation varies per the setting of the WobbleMode

command.

If WobbleMode = 1, this value represent the overlap of the

wobble movement (in percent)

If WobbleMode = 2, this value is the Period of the wobble

movement (in µsecs)

Value

range

-500 – 99 (WobbleMode = 1)

20 – 65535 (WobbleMode = 2)

amplitude Amplitude of the circular wobble movement (in job units)

Value

range

Depends on job units

WobbleMode

Description

Sets the mode of the Wobble command that allows varying line width

during a Mark command. The mode sets how the parameters of the

Wobble command are interpreted.

Syntax <set id='WobbleMode'>{U16 mode}</set>

Example <set id='WobbleMode'>2</set>

Session API

1040-0012 Revision 101

WobbleMode

Arguments

mode Sets the mode of the wobble command.

0 – Constant fluence (Reserved). The linear mark speed is

adjusted such that the tangential velocity of the wobble

pattern is performed at the mark speed while maintaining a

specified overlap.

1 – Constant linear mark speed with a specified overlap

2 – Constant linear mark speed with a constant period

(Default)

Value

range

0 - 2

WobbleTable

Description

Allows a custom specification of the wobble pattern. Independent data can

be specified for the X and Y axes for a table length of 1024. The table

represents the values of a trajectory for the X and Y axes that will be

repeated at the frequency specified in the XFrequency and YFrequency

attributes. The table data is additive to the normal trajectory being used

for marking.

Syntax

<WobbleTable XFrequency='{FLT XFreq}' YFrequency='{FLT YFreq}'>

 <Pt>{FLT XWobVal[0]; FLT YWobVal[0]}</Pt>

 <Pt>{FLT XWobVal[1]; FLT YWobVal[1]}</Pt>

 …

 <Pt>{FLT XWobVal[1023]; FLT YWobVal[1023]}</Pt>

</WobbleTable>

Example

<WobbleTable XFrequency='2.5' YFrequency='0.9' >

 <Pt>0.0; 0.0</Pt>

 <Pt>0.1; 0.05</Pt>

 <Pt>0.2; 0.1</Pt>

 …

 <Pt>0.0; 0.0</Pt>

</set>

Session API

1040-0012 Revision 102

WobbleTable

Arguments

XFrequency Specifies the frequency in KHz that the X axis table will

be repeated as it is applied to the marking vector.

Value range 0.1 – 10.0KHz

YFrequency Specifies the frequency in KHz that the Y axis table will

be repeated as it is applied to the marking vector.

Value range 0.1 – 10.0KHz

Pt Specifies the X & Y offsets that will be added to the

marking vector as the table is being traversed. Because

the tables for the X and Y axes can be repeated at

differnent frequencies, the table data parings are not

necessarilly applied at the same time.

Value range Depends on job units

LissajousWobble

Description

Sets the parameters of a wobble pattern that is in the shape of a lissajous

curve. This is a time and position variable pattern that pseudo-

randomizes the wobble path. The formulas used to calculate the

instantaneous wobble values is:

Xw(t) = XAmplitude * sin(ToRadiansPerSec(XFrequencyInKHz)(t) +

 ToRadians(XPhaseInDegrees)

Yw(t) = YAmplitude * sin(ToRadiansPerSec(YFrequencyInKHz)(t) +

 ToRadians(XPhaseInDegrees)

NOTE: Because of the limited bandwidth of the galvos, there will be a

frequency limit above which the wobble pattern will become distorted.

Syntax
<set id='LissajousWobble'>{FLT XAmplitude; FLT YAmplitude; FLT

XFrequencyInKHz; FLT YFrequencyInKHz; FLT XPhaseInDegrees}</set>

Example <set id='LissajousWobble'>0.1; 0.5; 1.0; 2.5; 45.0</set>

Session API

1040-0012 Revision 103

LissajousWobble

Arguments

XAmplitude Amplitude of the X axis wobble pattern

Value range Depends on job units.

YAmplitude Amplitude of the Y axis wobble pattern

Value range Depends on job units.

XFrequencyInKHz Frequency of the X axis pattern repetition

Value range 0.1 – 10KHz

YFrequencyInKHz Frequency of the Y axis pattern repetition

Value range 0.1 – 10KHz

XPhaseInDegrees Phase relationship of the Y axis relative ot the X

axis at the start of the waveform generation

Value range +/- 180 degrees

WobbleEnable

Description

Enables or disables the wobble function.

Note: Wobble parameters should have already been set using the <Set

id='Wobble'> parameter.

Syntax
<WobbleEnable>{U16 wobbleEnableSetting}, [U16

direction]</WobbleEnable>

Example <WobbleEnable>0, 1</WobbleEnable>

Arguments

wobbleEnableSetting Indicates whether wobble is to be enabled or

disabled.

Value range 0 – Disable wobble

1 – Enable wobble

Direction Optional argument indicating the

directionality of the circular wobble

Session API

1040-0012 Revision 104

WobbleEnable

Value range 0 – CCW rotation (default)

1 – CW rotation

XY2ErrorCheckMode (deprecated)

Description

Enables or disables XY2-100 status checking and the generation of

exceptions when the status is not as expected. Replaced by

GalvoErrorCheckMode.

Syntax
<set id='XY2ErrorCheckMode'>{U16 enable; HEX U32 mask; HEX U32

value}</set>

Arguments

enable If enabled, the XY2-100 and XY2-100e status registers are

continuously evaluated by the following method:

bit-wise ANDing the “mask” argument with the XY2-100 status

words to select the bits to be evaluated and then

comparing the selected bits to the “value” argument
Note: The mask and value arguments are described below.

If the value does not equal the actual masked status register, an

exception is generated and marking is immediately halted.

Recovery requires sending an Abort priority message to reset

the logic.

Value

range

0 – Disable XY2-100 status checking and the generation of

exceptions when the status is not as expected.

1 – Enable XY2-100 status checking and the generation of

exceptions when the status is not as expected.

mask The mask is split into a lower (bits[15..0]) and upper

(bits[31..16]) value corresponding to the primary XY2-100 port

and secondary XY2-100e port, respectively.

Note: See the description of the enable argument (above) to

understand the interpretation of this value.

Value

range

0 - 0xFFFFFFFF

Session API

1040-0012 Revision 105

XY2ErrorCheckMode (deprecated)

value The mask is split into a lower (bits[15..0]) and upper

(bits[31..16]) value corresponding to the primary XY2-100 port

and secondary XY2-100e port, respectively.

Note: See the description of the enable argument (above) to

understand the interpretation of this value.

Value

range

0 - 0xFFFFFFFF

GalvoErrorCheckMode

Description

Enables or disables Galvo status checking and the generation of

exceptions when the status is not as expected. XY2-100 or GSBus status

checking is automatically chosen based on the presence of devices on the

GSBus. If no GSBus device is detected, then XY2-100 is assumed.

Syntax
<set id='GalvoErrorCheckMode'>{U16 enable; HEX U32 mask; HEX U32

value}</set>

Example <set id='GalvoErrorCheckMode'>1; 0x0000FFFF; 0x0000FDFD</set>

Arguments

enable If enabled and no GSBus devices are present, the XY2-100

and XY2-100e status registers are continuously evaluated. If

GSBus devices are present, then the GSBus status word is

continuously evaluate by the following method:

bit-wise ANDing the “mask” argument with the galvo status

words to select the bits to be evaluated and then

comparing the selected bits to the “value” argument
Note: The mask and value arguments are described below.

If the value does not equal the actual masked status

register, an exception is generated and marking is

immediately halted. Recovery requires sending an Abort

priority message to reset the logic.

Session API

1040-0012 Revision 106

GalvoErrorCheckMode

Value

range

0 – Disable XY2-100 (GSBus) status checking and the

generation of exceptions when the status is not as

expected.

1 – Enable XY2-100 (GSBUS) status checking and the

generation of exceptions when the status is not as

expected.

mask For XY2-100, the mask is split into a lower (bits[15..0]) and

upper (bits[31..16]) value corresponding to the primary XY2-

100 port and secondary XY2-100e port, respectively. For

the GSBus, the status is divided into eight 4-bit fields, one

field for each galvo axis. The least significant four bits

corresponds to the first axis found.

Note: See the description of the enable argument (above)

to understand the interpretation of this value.

Value

range

0 - 0xFFFFFFFF

value For XY2-100, the mask is split into a lower (bits[15..0]) and

upper (bits[31..16]) value corresponding to the primary XY2-

100 port and secondary XY2-100e port, respectively. For

the GSBus, the status is divided into eight 4-bit fields, one

field for each axis. The least significant four bits

corresponds to the first axis found.

Note: See the description of the enable argument (above)

to understand the interpretation of this value.

Value

range

0 - 0xFFFFFFFF

XY2AxisDisable (deprecated)

Description
Enables or disables axis motion on the two XY2-100 ports. Replaced by

GalvoAxisDisable.

Syntax
<set id='XY2AxisDisable'>{U16 XY2-100eAxisMask; U16 XY2-

100AxisMask}</set>

Session API

1040-0012 Revision 107

XY2AxisDisable (deprecated)

Example <set id='XY2AxisDisable'>0; 1</set>

Arguments

XY2-100eAxisMask A three bit field disabling the corresponding axis

on the secondary XY2-100e port. Bits[2..0]

correspond to axes Z, Y, X, respectively. All bits

== 0 means enable all axes on the head.

Value range 0 - 7

XY2-100AxisMask A three bit field disabling the corresponding axis

on the primary XY2-100 port. Bits[2..0]

correspond to axes Z, Y, X, respectively.

Value range 0 - 7

GalvoAxisDisable

Description Enables or disables axis motion on the two three-axis ports.

Syntax
<set id='GalvoAxisDisable'>{U16 Head2AxisMask; U16

Head1AxisMask}</set>

Example <set id='GalvoAxisDisable'>0; 1</set>

Arguments

Head2AxisMask A three bit field disabling the corresponding axis

on the secondary XY2-100-2 port. Bits[2..0]

correspond to axes Z, Y, X, respectively. All bits

== 0 means enable all axes on the head.

For GSBus based heads, Bits[2..0] correspond to

axes , respectively.

Value range 0 - 7

Head1AxisMask A three bit field disabling the corresponding axis

on the primary XY2-100 port. Bits[2..0]

correspond to axes Z, Y, X, respectively. All bits

== 0 means enable all axes on the head.

For GSBus based heads, Bits[2..0] correspond to

axes 5, 4, 3, respectively.

Value range 0 - 7

Session API

1040-0012 Revision 108

GSBusDisable

Description Disables or enables active GSBus command channel driving by the SMC

Syntax <GSBusDisable>{bool disable}</GSBusDisable>

Example <GSBusDisable>true</GSBusDisable>

Arguments

disable Boolean indicating the desired state of GSBus

command channel driving. Active command

channel driving should be disabled if

TuneMaster-II is used to examine and change

tuning parameters of an attached Lightning-II

scanner system.

Value range True or 1 – Disable driving the GSBus command

channels

False or 0 – Enable GSBus command channel

driving

XY2AddressMode

Description Sets the addressing mode of the XY2-100 interface

Syntax <set id='XY2AddressMode'>{Mode}</set>

Example <set id='XY2AddressMode'>Normal</set>

Arguments

Mode Defines the command data width of the XY2-

100 interface. Normal is traditional 16-bit

command data. Enhanced is 20-bit command

data used with Cambridge Technology

LightningTM II galvos with an XY2-100 interface.

Value range Normal or 0

Enhanced or 1

Session API

1040-0012 Revision 109

6.5.3 MOTION CONTROL COMMANDS

Note: Coordinate units are controlled by the <set id='Units'> parameter.

ArcAbs

Description Mark and Arc shape using the current marking parameters.

Syntax <ArcAbs>{FLT xCenter; FLT yCenter; FLT sweepAngle}</ArcAbs>

Example <ArcAbs>1000; 2000; 47.5</ArcAbs>

Arguments

xCenter

yCenter

Center of the arc

Value range -223 – (223-1) (bits) or +/- ½ field size (user units)

sweepAngle How far to sweep the arc in degrees. A positive

value is counter-clockwise.

The starting point of the arc is defined by the target

of the last Jump or Mark instruction.

Value range 0 - 360

EnableParkPosition (deprecated)

Description

Enables or disables the “parking” of a scanhead in dual-scanhead

systems. GalvoAxisDisable is the preferred command.

Note: It is expected that a JumpAbs command is executed prior to this

command to move the galvos to the “park” position.

Syntax <EnableParkPosition>{U16 parkSetting}</EnableParkPosition>

Example <EnableParkPosition>2</EnableParkPosition>

Arguments parkSetting Identifies the scanhead(s) to be enabled or disabled

Session API

1040-0012 Revision 110

EnableParkPosition (deprecated)

Value range 0 - Parking is disabled for both heads

1 - Parking is enabled for head 1 (analog or XY2-

extended port)

2 - Parking is enabled for head 2 (normal XY2-100 port)

3 - Both heads are parked.

JumpAbs

Description Moves laser galvos to the absolute position with the laser off.

Syntax
<JumpAbs>{FLT xCoordinate; FLT yCoordinate[; FLT

zCoordinate]}</JumpAbs>

Example <JumpAbs>-5000; -5000; 100</JumpAbs>

Arguments

xCoordinate X-coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the X field size of the

system in floating point notation.

yCoordinate Y-coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the Y field size of the

system in floating point notation.

zCoordinate Z coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Session API

1040-0012 Revision 111

JumpAbs

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the Z field size of the

system in floating point notation.

JumpAbsEx

Description

Moves laser galvos to the absolute position with the laser off.

Note: This command differs from the JumpAbs command (above) in

that it permits values that exceed the 16-bit range of a normal scan

head. This command is used in large virtual-field MOTF applications.

Syntax
<JumpAbsEx>{FLT xCoordinate; FLT yCoordinate[; FLT

zCoordinate]}</JumpAbsEx>

Example <JumpAbsEx>-50000; -65000; 1000</JumpAbsEx>

Arguments

xCoordinate X coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

yCoordinate Y coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

Session API

1040-0012 Revision 112

JumpAbsEx

zCoordinate Z coordinate of the end of a jump vector. Values are

floating point and are converted into system “bits”
units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

JumpAbsList

Description
Move the laser galvos to the each one of the specified points in

succession at the specified update interval with the laser off.

Syntax

<JumpAbsList tick='{U16 tick}'>

 <Pt>{FLT X0; FLT Y0; FLT Z0}</Pt>

 <Pt>{FLT X1; FLT Y1; FLT Z1}</Pt>

 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn}</Pt>

</JumpAbsList>

Example

<JumpAbsList tick='10'>

 <Pt>100; 215; 10</Pt>

 <Pt>110; 240; 30</Pt>

 <Pt>120; 250; 50</Pt>

 <Pt>130; 255; 60</Pt>

</JumpAbsList>

Arguments
tick The galvo command update interval (in µsecs)

Value range 10 – 65535

Session API

1040-0012 Revision 113

JumpAbsList

Xn X coordinate in a sequence of point coordinates that

will be written to the galvos at the rate specified by the

tick parameter. Values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that

will be written to the galvos at the rate specified by the

tick parameter. Values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

Zn Z coordinate in a sequence of point coordinates that

will be written to the galvos at the rate specified by the

tick parameter. Values are floating point and are

converted into system “bits” units per the Units

command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

Description
Moves the galvos to a position relative to the last commanded position

with the laser off.

Session API

1040-0012 Revision 114

Syntax <JumpRel>{FLT xOffset; FLT yOffset[; FLT zOffset]}</JumpRel>

Example <JumpRel>25; 50; 0</JumpRel>

Arguments

xOffset X offset used to calculate a jump vector relative to the

last commanded position. Values are floating point

and are converted into system “bits” units per the
Units command.

Value range -65535 - 65535

yOffset Y offset used to calculate a jump vector relative to the

last commanded position. Values are floating point

and are converted into system “bits” units per the
Units command.

Value range -65535 - 65535

zOffset Z offset used to calculate a jump vector relative to the

last commanded position. Values are floating point

and are converted into system “bits” units per the
Units command.

Note: The Z offset is optional. If the Z offset is not

specified, its relative move is set to zero.

Value range -65535 - 65535

JumpRelEx

Description

Moves the galvos to a position relative to the last commanded position

with the laser off.

Note: This command differs from the JumpRel command (above) in that it

permits values that exceed the 16-bit range of a normal scan head. This

command is used in large virtual-field MOTF applications.

Syntax <JumpRelEx>>{FLT xOffset; FLT yOffset[; FLT zOffset]}</JumpRelEx>

Example <JumpRelEx>-50000; -65000; 1000</JumpRelEx>

Session API

1040-0012 Revision 115

JumpRelEx

Arguments

xOffset X offset used to calculate a jump vector relative to the

last commanded position. Values are floating point and

are converted into system “bits” units per the Units

command.

Value range -231 - 231-1

yOffset Y offset used to calculate a jump vector relative to the

last commanded position. Values are floating point and

are converted into system “bits” units per the Units

command.

Value range -232 - 232-1

zOffset Z offset used to calculate a jump vector relative to the

last commanded position. Values are floating point and

are converted into system “bits” units per the Units

command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -232 - 232-1

JumpAndDrillList

Description

Moves the galvos to each one of the specified points in succession and

fires the laser. The laser properties are changed at each location as

specified in the mode of operation.

Note: Jumps are not micro-vectored, so galvo instability may result if

jump distances are too large.

Syntax

<JumpAndDrillList LaserOnTime='{U16 laserOnTime}'

LaserFireMode='{Enum laserFireMode}' [ExtSyncPin ='{U16 extSyncPin }']

[ExtSyncPinState='{U16 extSyncPinState }']>

 <Pt>{FLT X0; FLT Y0}</Pt>

 <Pt>{FLT X1; FLT Y1}</Pt>

 . . .

 <Pt>{FLT Xn; FLT Yn}</Pt>

Session API

1040-0012 Revision 116

JumpAndDrillList

</JumpAndDrillList >

Example

< JumpAndDrillList LaserOnTime='20' LaserFireMode='NoWait'>

 <Pt>100; 215</Pt>

 <Pt>110; 240</Pt>

 <Pt>120; 250</Pt>

 <Pt>130; 255</Pt>

</JumpAndDrillList>

Argument

LaserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Value range 0 - 65535

LaserFireMode Specifies the synchronization level of issuance of the

next jump relative to the firing of the laser.

Value range NoWait – Fire the laser and do not wait.

Immediately jump to the next location.

WaitUntilOn – Fire the laser and wait until it actually

is on. This accommodates any LaserOnDelay that

may be specified.

WaitUntilOff – Fire the laser and wait until it is off.

This accomodates the LaserOnDelay, LaserOnTime,

and LaserOffDelay

WaitUntilExtSync – Fire the Laser and wait until an

external signal specified by the optional argument

ExtSyncPin is asserted to the state specified by the

optional argument ExtSyncPinState.

WaitUntilGalvoCmdDelayComp – Fire the laser and

wait for the amount of time (LaserOnTime –

GalvoCmdDelayComp). GalvoCmdDelayComp is

specified using the command:

<set id=’GalvoCmdDelayComp’>. If the result is

negative, then jump to the next site immediately.

ExtSyncPin Optional argument required only if the

LaserFireMode is set to WaitUntilExtSync. Specifies

the external pin to sense. The pin identifier is the

same as the portNumber argument in the command

WaitForIO

Session API

1040-0012 Revision 117

GalvoCmdDelayComp

Description
Sets the value to use in the JumpAndDrillList command when the

LaserFiringMode is set to WaitUntilGalvoCmdDelayComp

Syntax <set id=‘GalvoCmdDelayComp’>{U16 value}</set>

Example <set id=’GalvoCmdDelayComp’>30</set>

JumpAndDrillList

Value range 0 – 31 See WaitForIO for details.

ExtSyncPinStat

e

Optional argument required only if the

LaserFireMode is set to WaitUntilExtSync. Specifies

the logical state of the external pin being sensed.

The state should take into consideration assertion

inversions due to signal conditioning circuitry.

Value range 0 – 1

Xn X coordinate in a sequence of point coordinates that

will be written to the galvos in succession.

The position values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value

can take on a range which represents the X virtual

field size of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that

will be written to the galvos in succession.

The position values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value

can take on a range which represents the Y virtual

field size of the system in floating point notation.

Session API

1040-0012 Revision 118

GalvoCmdDelayComp

Arguments

value Number of micro-seconds that represent the delay from

issuing a jump command to when the galvos indicate out

of position

Value range 0 – 500

JumpAndFireList

Description

Moves the galvos to each one of the specified points in succession and

fires the laser. The laser properties are changed at each location as

specified in the mode of operation.

Note: Jumps are not micro-vectored, so galvo instability may result if

jump distances are too large.

Syntax

<JumpAndFireList LaserOnTime='{U16 LaserOnTime}' LaserOnDelay='{U16

LaserOnDelay}' [OutputMode='{U16 outputMode}']>

 <Pt>{FLT X0; FLT Y0; FLT Z0; U32 laserValue0}</Pt>

 <Pt>{FLT X1; FLT Y1; FLT Z1; U32 laserValue1}</Pt>

 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn; U32 laserValuen}</Pt>

</JumpAndFireList>

Example

< JumpAndFireList LaserOnTime='10' LaserOnDelay='0' OutputMode='0'>

 <Pt>100; 215; 10; 1</Pt>

 <Pt>110; 240; 30; 2</Pt>

 <Pt>120; 250; 50; 3</Pt>

 <Pt>130; 255; 60; 0</Pt>

</JumpAndFireList>

Arguments

LaserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Value range 0 - 65535

LaserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

Value range 0 - 65535

outputMode Specifies how to interpret laserValuen.

Session API

1040-0012 Revision 119

JumpAndFireList

Value range 0 = Interpret laserValuen as a laser pulse-width pair

(laser-ticks)

1 = Interpret laserValuen as Analog Port 1 value (12-

bits)

2 = Interpret laserValuen as Analog Port 2 value (12-

bits)

3 = Interpret laserValuen as Digital power port value

(8-bits)

Xn X coordinate in a sequence of point coordinates that

will be written to the galvos in succession.

The position values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value

can take on a range which represents the X virtual

field size of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that

will be written to the galvos in succession.

The position values are floating point and are

converted into system “bits” units per the Units

command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value

can take on a range which represents the Y virtual

field size of the system in floating point notation.

Zn Z coordinate in a sequence of point coordinates that

will be written to the galvos in succession.

The position values are floating point and are

converted into system “bits” units per the Units

command.

Session API

1040-0012 Revision 120

JumpAndFireList

Value range -231 - 231-1

Note: Depending on the unit selection, this value

can take on a range which represents the Z virtual

field size of the system in floating point notation.

laserValuen Value is interpreted per the mode specification.

The value is applied to the hardware prior to the

laser being fired.

Value range The value range is mode-dependent. If outputMode

= 0, the value represents individual pulse width

settings in laser ticks for LASER_MOD1 and

LASER_MOD2. The LASER_MOD1 setting is

specified in bits [15 – 0], and the LASER_MOD2

setting in bits [31 – 16]

MarkAbs

Description Moves the galvos to the absolute position with the laser on.

Syntax
<MarkAbs>{FLT xCoordinate; FLT yCoordinate[; FLT

zCoordinate]}</MarkAbs>

Example <MarkAbs>-5000; 5000; 200</MarkAbs>

Arguments

xCoordinate X coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the X field size of the

system in floating point notation.

yCoordinate Y coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Session API

1040-0012 Revision 121

MarkAbs

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the Y field size of the

system in floating point notation.

zCoordinate Z coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can

take on a range which represents the Z field size of the

system in floating point notation.

MarkAbsEx

Description

Moves the galvos to the absolute position with the laser on.

Note: This command differs from the MarkAbs command (above) in that

it permits values that exceed the 16-bit range of a normal scan head. This

command is used in large virtual-field MOTF applications.

Syntax
<MarkAbsEx>{FLT xCoordinate; FLT yCoordinate; FLT

zCoordinate}</MarkAbsEx>

Example <MarkAbsEx>-50000; -65000; 0</MarkAbsEx>

Arguments

xCoordinate X coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

Session API

1040-0012 Revision 122

MarkAbsEx

yCoordinate Y coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

zCoordinate Z coordinate of the end of a marking vector. Values are

floating point and are converted into system “bits” units
per the Units command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

MarkAbsList

Description

Move the galvos to each of the specified points in succession, at the

specified update interval, with the laser on. A Mark delay is inserted at

the end of the list.

Syntax

<MarkAbsList tick='{U16 tick}'>

 <Pt>{FLT X0; FLT Y0; FLT Z0}</Pt>

 <Pt>{FLT X1; FLT Y1; FLT Z1}</Pt>

 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn}</Pt>

</MarkAbsList>

Session API

1040-0012 Revision 123

MarkAbsList

Example

<MarkAbsList tick='10'>

 <Pt>100; 215; 10</Pt>

 <Pt>110; 240; 30</Pt>

 <Pt>120; 250; 50</Pt>

 <Pt>130; 255; 60</Pt>

</MarkAbsList>

Arguments

tick The galvo command update interval (in µsecs)

Value range 10 - 65535

Xn X coordinate in a sequence of point coordinates that will

be written to the galvos at the rate specified by the tick

parameter. Values are floating point and are converted

into system “bits” units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that will

be written to the galvos at the rate specified by the tick

parameter. Values are floating point and are converted

into system “bits” units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

Zn Z coordinate in a sequence of point coordinates that will

be written to the galvos at the rate specified by the tick

parameter. Values are floating point and are converted

into system “bits” units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate is

not specified, the value of the Z coordinate is not

changed.

Session API

1040-0012 Revision 124

MarkAbsList

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

MarkRel

Description
Moves the galvos to a position relative to the last commanded position

with the laser on.

Syntax <MarkRel>{FLT xOffset; FLT yOffset[; FLT zOffset]}</MarkRel>

Example <MarkRel>-355; 500; 10</MarkRel>

Arguments

xOffset X offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Value range -65535 - 65535

yOffset Y offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Value range -65535 - 65535

zOffset Z offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Note: The Z offset is optional. If the Z offset is not

specified, its relative move is set to zero.

Value range -65535 - 65535

Session API

1040-0012 Revision 125

MarkRelEx

Description

Moves the galvos to a position relative to the last commanded position

with the laser off.

Note: This command differs from the MarkRel command (above) in that it

permits values that exceed the 16-bit range of a normal scan head for

virtual field MOTF applications.

Syntax <MarkRelEx>{FLT xOffset; FLT yOffset[; FLT zOffset]}</MarkRelEx>

Example <MarkRelEx>-355; 500; 100</MarkRelEx>

Arguments

xOffset X offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Value range -231 - 231-1

yOffset Y offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Value range -231 - 231-1

zOffset Z offset used to calculate a marking vector relative to

the last commanded position. Values are floating point

and are converted into system “bits” units per the Units

command.

Note: The Z coordinate is optional. If the Z coordinate

is not specified, the value of the Z coordinate is not

changed.

Value range -231 - 231-1

Session API

1040-0012 Revision 126

6.5.4 LASER CONTROL PARAMETERS

LaserEnableDelay

Description

Sets the time required to enable the laser prior to marking. A default value

for this parameter can be set in the Laser Configuration file as parameter

LaserEnableDelay.

Syntax <set id='LaserEnableDelay'>{U16 delay}</set>

Example <set id='LaserEnableDelay'>10</set>

Arguments

delay The delay (in milliseconds) from the leading edge of

LASERENABLE to the leading edge of LASER_GATE

Value range 0 - 65535

LaserEnableTimeout

Description

Sets the time-out for LASERENABLE to de-assert. A default value for this

parameter can be set in the Laser Configuration file as parameter

LaserEnableTimeout.

Syntax <set id='LaserEnableTimeout'>{U16 timeout}</set>

Example <set id='LaserEnableTimeout'>20</set>

Arguments

timeout The time-out (in milliseconds) from the trailing edge of

LASER_GATE to when LASERENABLE is de-asserted

Value range 0 - 65535

LaserFPK

Description
Sets the LaserFPK signal timing. A Default values for this parameter can

be set in the Laser Configuration file as parameter LaserFPK.

Syntax <set id='LaserFPK'>{FLT position; I16 length}</set>

Example <set id='LaserFPK'>-100; 10</set>

Session API

1040-0012 Revision 127

LaserFPK

Arguments

position The delay (in laser timing ticks) from the leading edge of

LASER_GATE to the assertion of the LASER_MOD3 signal

Value range -32768 - 32767

length The duration (in laser timing ticks) of assertion of the

LASER_MOD3 signal

Value range 0 - 65535

LaserModDelay

Description
Sets the modulation delay of the laser. A default value for this parameter

can be set in the Laser Configuration file as parameter LaserModDelay.

Syntax <set id='LaserModDelay'>{U16 delay}</set>

Example <set id='LaserModDelay'>25</set>

Arguments

delay The delay (in laser timing ticks) from the leading edge of

LASER_GATE to the output of the first pulse on the

LASER_MOD1 signal

Value range 0 - 65535

LaserOffDelay

Description Sets the delay for turning off the laser when marking.

Syntax <set id='LaserOffDelay'>{U16 duration}</set>

Example <set id='LaserOffDelay'>100</set>

Arguments
duration Length of time (in µsecs) to delay

Value range 0 - 65535

Session API

1040-0012 Revision 128

LaserOnDelay

Description

Sets the delay for turning on the laser when marking relative to micro-

vector generation. A negative value means that LASER_GATE is asserted

before micro-vectoring begins.

Syntax <set id='LaserOnDelay'>{I16 duration}</set>

Example <set id='LaserOnDelay'>200</set>

Arguments

duration Length of time to delay (in µsecs) relative to the start of

micro-vectoring

Value range -32768 - 32767

LaserStandby

Description
Sets the standby settings of the laser. A default value for this parameter

can be set in the Laser Configuration file as parameter LaserStandby.

Syntax <set id='LaserStandby'>{U16 laserID; U16 width; U16 period}</set>

Example <set id='LaserStandby'>2; 10; 100</set>

Arguments

laserID Laser modulation signal identification

Value range 1 = LASER_MOD1

2 = LASER_MOD2

width The width of the laser modulation pulse (in laser timing

ticks) when the laser is ON.

Value range 0 – 65535

Note: If the value is 0, no modulation will be emitted.

period The period of the laser modulation pulse train (in laser

timing ticks) when the laser is ON.

Value range 0 - 65535

Note: If the value is 0, no modulation will be emitted.

Session API

1040-0012 Revision 129

LaserPipelineDelay

Description

Set the time that all laser signals are time-shifted relative to the issuance

of galvo position commands. This delay is useful for compensating for

digital servo controllers that have an inherent processing delay time from

when the command input is applied to when the mirrors actually move.

Syntax <set id='LaserPipelineDelay'>{U16 delay}</set>

Example <set id='LaserPipelineDelay'>1500</set>

Arguments

delay The length of time (in µsecs) that all laser control signals

are time-shifted relative to micro-vectoring operations.

Value range 0 – 4000

Note: The value range is limited by the value of a laser

timing tick. The capacity of the pipeline is 4000 tick

elements.

Description

Sets the level of the laser power port. (Note: The LaserPower port may

be the 8-bit digital port or analog port 0 depending on the Laser

Configuration file setting of the Laser Power Port bit of the

LaserModeConfig word.)

Syntax <set id='LaserPower'>{U16 powerValue}</set>

Example <set id='LaserPower'>200</set>

Arguments

powerValue Setting of the laser power port (in bits). If the value is

different from the one in the last LaserPower command,

then the LaserPowerDelay delay is invoked.

Value range 0 - 255

LaserPowerDelay

Description
Sets the delay after changing the power setting. A default value can be

set in the Laser Configuration file as the parameter LaserPowerDelay.

Syntax <set id='LaserPowerDelay'>{U32 duration}</set>

Example <set id='LaserPowerDelay'>125</set>

Session API

1040-0012 Revision 130

LaserPowerDelay

Arguments

duration Length of time to delay after setting LaserPower or

executing WriteAnalog for port 0

Value range 0 - (232-1)/50

LaserPulse

Description Sets the laser ON pulse settings of the laser.

Syntax <set id='LaserPulse'>{U16 laserID; U16 width; U16 period}</set>

Example <set id='LaserPulse'>1; 50; 100</set>

Arguments

laserID Laser modulation signal identification

Value range 1 = LASER_MOD1

2 = LASER_MOD2

width The width of the laser modulation pulse (in laser timing

ticks) when the laser is ON

Value range 0 – 65535 laser ticks

period If laserID is set to 1, this value controls the repetition

interval of the laser modulation pulse train (in laser

timing ticks) for both LASER_MOD1 and LASER_MOD2

when the laser is ON.

If laserID is set to 2, then this value sets the timing skew,

or delay between LASER_MOD1 and LASER_MOD2. If

the value is zero, then the two signals are in phase with

each other. If the value is set to ½ of the period value

used when laserID is 1, then the signals will be 180

degrees out of phase.

Note: For backward compatibility with the EC1000

behavior, the signals will be 180 degrees out of phase if

the period value is set to the same number when laserID

is 1 and 2.

Session API

1040-0012 Revision 131

LaserPulse

Value range 0 – 65535 laser ticks

Note: If laserID is set to 2, then this value should be <

the value set when laserID is set to 1.

LaserTiming

Description

Sets the value of a laser timing "tick," which is the unit of measurement

for all laser timing values. A default value can be set in the Laser

Configuration file as the parameter LaserTiming.

Syntax <set id='LaserTiming'>{U16 value}</set>

Example <set id='LaserTiming'>50</set>

Arguments

value Number of 20ns clock period increments in a laser timing

"tick"

Value range 1 – 500

LaserModType

Description

Sets the behavior laser modulation synchronization feature. A default

value can be set in the Laser Configuration file by setting the Laser Sync

Mode bits in the parameter LaserModeConfig. Use of this command

effectively changes the setting those bits at run-time.

Syntax <set id='LaserModType'>{U16 type}</set>

Example <set id='LaserModType'>1</set>

Arguments type Laser synchronization method

Session API

1040-0012 Revision 132

LaserModType

Value

range

0 = Asynchronous modulation. The laser modulation is

discontinuous, switching between the background

modulation and the lasing modulation coincident with the

LASER_GATE signal

1 = Synchronous to the free-running modulation signal on

LASER_MOD3. LASER_MOD3 takes its modulation

settings from the background settings for LASER_MOD1.

The background signal for LASER_MOD1 and

LASER_MOD2 is set for no modulation. In this mode, the

LASER_GATE and subsequent LASER_MOD1 and

LASER_MOD2 timing is synchronized to the rising edge of

pulses on LASER_MOD3

2 = Synchronous to the free-running modulation of

LASER_MOD2. In this mode the LASER_GATE signal is

synchronized to the falling edge of LASER_MOD2. Both

LASER_MOD1 and LASER_MOD2 are free-running

according to the LaserPulse settings defined for them.

3 = Synchronous to the external signal source received on

LASER_STAT6. In this mode, the LASER_GATE and

subsequent LASER_MOD1 and LASER_MOD2 timing is

synchronized to the falling edge of pulses received on

LASER_STAT6.

Note: Synchronous modulation is useful for lasers that phase-

lock to an external frequency source.

6.5.5 LASER CONTROL COMMANDS

EnableLaser

Description Sets the laser active state.

Syntax <set id='EnableLaser'>{BOOL laserActiveState}</set>

Example <set id='EnableLaser'>TRUE</set>

Session API

1040-0012 Revision 133

EnableLaser

Arguments

laserActive

State

The “enabled” or “disabled” state of the laser

Value

range

true = The laser is enabled.

false = The laser is disabled. (If this value is

selected, then the special pointer laser

mode is activated per the settings of

LaserModeConfig.)

LaserOn

Description Turns the laser on for the specified duration.

Syntax <LaserOn>{U32 duration}</LaserOn>

Example <LaserOn>1000</LaserOn>

Arguments
duration Length of time (in µsecs) to turn the laser on

Value range 1 - 232-1

LaserFire

Description
Turns the laser on for the specified duration and then pauses according to

the command processing wait mode.

Syntax <LaserFire>{U16 waitMode; U16 duration}</LaserFire>

Example <LaserFire>2; 1000</LaserFire>

Arguments waitMode The command processing wait mode.

Session API

1040-0012 Revision 134

LaserFire

Value

range

0 = Do not wait. Process the next command

immediately while lasing.

1 = Wait until the laser starts firing. If a

LaserOnDelay value is set, command processing

is suspended until after that time.

2 = Wait until complete. Command processing is

suspended until the laser turns off, including the

LaserOffDelay.

duration Length of time (in µsecs) to turn the laser on

Value

range

1 - 65535

LaserSignalOff

Description Turns the laser off immediately.

Syntax <LaserSignalOff></LaserSignalOff>

Example <LaserSignalOff></LaserSignalOff>

Arguments
N/A N/A

N/A N/A

LaserSignalOn

Description Turns the laser on immediately.

Syntax <LaserSignalOn></LaserSignalOn>

Example <LaserSignalOn></LaserSignalOn>

Arguments N/A N/A

Session API

1040-0012 Revision 135

LaserSignalOn

N/A N/A

6.5.6 EXTERNAL I/O COMMANDS

WaitForIO

Description
Wait for the digital port value to be set. Job execution will pause until the

external signal is in the condition specified by the levelPolarity argument.

Syntax
<WaitForIO>{U16 portNum; U16 levelPolarity; U32 timeOut; U16

debounce }</WaitForIO>

Example <WaitForIO>2; 1; 100000; 5000</WaitForIO>

Arguments

portNumber Port identifier

Value range Port Association

0 AUX_START_ISO

1-4 AUX_GPI{1-4}_ISO

5 START

6 ABORT_ISO

7-13 LASER_STAT{0-6}_ISO

14 XY2_INPOS

15 AUX_XY2_INPOS

16-31 AUX_GPI{0-15}

levelPolarity Defines the state or transition of the signal when

triggering occurs.

Value range 0 = LowLevel

1 = HighLevel

2 = RisingEdge

3 = FallingEdge

Session API

1040-0012 Revision 136

WaitForIO

timeOut The wait is aborted if the time exceeds this value (in

µsecs). If set to 0, the wait is indefinite.

If a time-out occurs, an exception event is generated

and the WaitForIOTimeout error code returned.

Value range 0 - (232-1)/50

debounce Length of time (in milliseconds) to debounce the

external signal

Value range 1 - 65535

WriteAnalog

Description Sets the analog output port to a new value.

Syntax <WriteAnalog>{U16 PortNumber; U16 setting}</WriteAnalog>

Example <WriteAnalog>1; 344</WriteAnalog>

Arguments

portNumbe

r

Analog output port identifier

Value range 0 = Laser Power port (LASER_ANALOG0)

1 = Auxiliary Analog output port (LASER_ANALOG1)

setting New port value

Value range 0 - 4095

WriteDigital

Description Sets the digital output port to a new value.

Syntax <WriteDigital>{U16 portNumber; U16 setting}</WriteDigital>

Example <WriteDigital>3; 1</WriteDigital>

Session API

1040-0012 Revision 137

WriteDigital

Arguments

portNumber Port identifier

Port Association

0 AUX_JOBACTIVE

1-4 AUX_GPO1-4

5 AUX_LASING

6 AUX_READY

7 AUX_BUSY

16-31 Extended DOUT bits 0-15

100 System status ports as a group

101 Extended I/O ports as a group

102 8-bit digital power port

Value range See port numbers (above).

setting The new value for the port (as an unsigned 16-bit

integer)

Note: The actual signal polarity is determined by how

the optical isolators are connected.

Single bit mode (ports 0-31):

0 (unasserted) and 1 (asserted)

Group mode (ports 100-102)

0 (unasserted) and 1 (asserted) in bit positions defined

as follows:

Port Bits Signal

100 0-3 AUX_GPO1-4

 4-7 AUX_LASING, AUX_BUSY, AUX_READY,

AUX_JOBACTIVE

101 0-15 Extended DOUT bits 0-15

102 0-7 Laser digital bits 0-7

Value range 0 - 65535

Session API

1040-0012 Revision 138

6.5.7 UTILITY COMMANDS

ApplicationEvent

Description

Defines an application event.

Note: Application events are used to notify the application that a certain

point in the execution of the job has been reached. Events are handled by

the application using the OnMessageEvent method.

Application events should be used sparingly as system performance could

be affected if they are generated at a high rate.

Syntax <ApplicationEvent>{U16 param1; U32 param2}</ApplicationEvent>

Example <ApplicationEvent>100; 345</ApplicationEvent>

Arguments

param1 First application-specific parameter. Value is returned in

OnMessageEvent puiPayloadHigh[31..16].

Value range 0 - 65536

param2 Second application-specific parameter. Value is returned

in OnMessageEvent puiPayloadLow[31..0]

Value range 0 - 232-1

BeginJob

Description

Generates a BeginJob application event when executed by the marking

engine. The JobDataCntr parameter in the StatInfoData broadcast packet

is re-initialized to zero. BeginJob automatically sets the system BUSY

signal.

Syntax <BeginJob></BeginJob>

Example <BeginJob></BeginJob>

Arguments

N/A N/A

Value

range

N/A

Session API

1040-0012 Revision 139

EndJob

Description

Generates an EndJob application event when executed by the marking

engine. The system BUSY and MARKINPROG signals are automatically

cleared.

Syntax <EndJob></EndJob>

Example <EndJob></EndJob>

Arguments

N/A N/A

Value

range

N/A

GalvoCmdMarker

Description
Inserts a marker into the Lightning II command stream via the GSBus. The

marker can be used to synchronize Lightning II probe data collection

Syntax <GalvoCmdMarker></GalvoCmdMarker>

Example <GalvoCmdMarker></GalvoCmdMarker>

Arguments

N/A N/A

Value

range

N/A

JobDataCntr

Description

Sets the job data counter to the specified value.

Note: The job data counter is incremented as each 32-bit data element of

the job stream is processed by the marking engine. This is useful for

tracking how much data the marking engine has processed at any given

time. The current value of the counter is reported in the System Status

broadcast data as element name JobDataCntr.

Syntax <JobDataCntr>{U32 value}</JobDataCntr>

Session API

1040-0012 Revision 140

JobDataCntr

Example <JobDataCntr>0</JobDataCntr>

Arguments
value Counter value

Value range 0 (only accepts zero for now)

JobMarker

Description

(Reserved for future use). Generates an Application Event of the type

MarkProgress and/ or CycleProgress as the job progresses. The current

JobMarker data value is also available in the broadcast status data

JobMarker element.

Note: The Application Events generated by this command are typically

used to track job execution progress.

Syntax <JobMarker>{U16 value}</JobMarker>

Example <JobMarker>35</JobMarker>

Arguments

value An encoded, application-defined marker value. Bits[7..0]

encode the MarkProgress, and Bits[14..8] encode the

CycleProgress. The marker value is sampled every

200msec by the SMC. If the value changes within this

interval, an ApplicationEvent will be generated.

If bit[15] of the most recent JobMarker value is set, a

MarkProgress message will be generated. Otherwise, a

CycleProgress message will be generated.

The corresponding JobMarker field data—right-shifted in

the case of a CycleProgress message—will be returned in

the puiPayloadLow value of the OnMessageEvent.

Value range 0 - 65535

Session API

1040-0012 Revision 141

JobTimer

Description

Controls the state of the hardware job timer. Used to time actual

execution time of a job. The last saved timer value is returned as the

JobTimer value in the XML data packet returned when using the

GetRegisters priority message.

Syntax <JobTimer>{U16 action}</JobTimer>

Example <JobTimer>1</JobTimer>

Arguments

action Controls the state of the timer logic.

Value range 0 = Clear the timer but do not count

1 = Start or continue the timer

2 = Stop or pause the timer

3 = Save the timer (a snap-shot of the timer is taken for

readback)

LongDelay

Description Delays all operations for the specified duration.

Syntax <LongDelay>{U32 duration}</LongDelay>

Example <LongDelay>10000</LongDelay>

Arguments
duration Length of time to sleep (in µsecs)

Value range 0 - (232-1)/100 → (0 - 42,949,672)

Set

Description Sets the named parameter to the specified value.

Syntax <Set id='{STR parameter}'>{value(s)}</set>

Example <Set id='MarkSpeed'>10; 2</set>

Arguments
parameter The name of the parameter to be set

Value range Any valid parameter name

Session API

1040-0012 Revision 142

Set

value(s) The number of arguments is specific to the named

parameter.

Value range The values of the argument(s) is specific to the named

parameter.

6.5.8 COORDINATE SYSTEM TRANSFORM PARAMETERS

ActiveCorrectionTable

Description Sets the active current correction table.

Syntax <set id='ActiveCorrectionTable'>{U16 table}</set>

Example <set id='ActiveCorrectionTable'>1</set>

Arguments

table Identifies the correction table to be used

Value range 1 – 4, 257- 260

Note: Only Tables 1 and 2 should be selected during job

execution. Tables 3 and 4 are used only for loading

alternate data for the XY2-100 interface and for GSBus

channels 3 - 5. See Figure 26 - Multiple Correction Table

Usage in the SMC on page 293 for more details.

Note: The secondary values 257 – 260 are used to

indicate that correction table data being sent to the

controller using a subsequent sendStreamData method

is either 20-bit (for EC1000 platforms with 20-bit

firmware) or 24-bit for the SMC. This represents setting

the 0x100 bit in the table value. Setting this bit is only

necessary when sending a table using sendStreamData(),

not when switching between tables at run-time.

Session API

1040-0012 Revision 143

FieldOffset

Description

Sets the offsets to be applied to vectors at run-time. These offsets are

integrated into the position commands during micro-vector operations.

These values override the offsets specified in the UserConfig and

LensConfig files.

Syntax <set id='FieldOffset'>{FLT xOffset; FLT yOffset; FLT zOffset}</set>

Example <set id='FieldOffset'>5000; -1000; 100</set>

Arguments

xOffset Offset to be applied to the X vector at run-time.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

yOffset Offset to be applied to the Y vector at run-time.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

zOffset Offset to be applied to the Z vector at run-time.

Note: The Z offset is optional. If the Z offset is not

specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

FieldOrientation

Description

Sets the orientation of the marking field relative to the vector coordinate

system. This transformation is applied at run-time. This value overrides

the Rotation setting contained in the UserConfig file.

Syntax <set id='FieldOrientation'>{U16 rotation}</set>

Example <set id='FieldOrientation'>90</set>

Session API

1040-0012 Revision 144

FieldOrientation

Arguments

rotation Specifies the counter-clockwise rotation of the marking

field in degrees.

Value range 0, 90, 180, 270

Offset

Description

Sets the offsets to be applied to the vector set before being passed to the

SMC. These offsets are integrated in to the job data as it is being

compiled. A saved job will have these offsets built into it.

Syntax <set id='Offset'>{FLT xOffset; FLT yOffset; FLT zOffset}</set>

Example <set id='Offset'>1000; 2000; 100</set>

Arguments

xOffset Offset in bits to be applied to the X vector at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

yOffset Offset in bits to be applied to the Y vector at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

zOffset Offset in bits to be applied to the Z vector at run-time.

Note: The Z offset is optional. If the Z offset is not

specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

Session API

1040-0012 Revision 145

HeadOffset

Description Set offsets on a per-scanhead basis.

Syntax
<set id='HeadOffset'>{U16 headID, FLT xOffset; FLT yOffset [; FLT

zOffset]}</set>

Example <set id='HeadOffset'>0; 1000; 2000; 100</set>

headID Scanhead number to apply the offset values to

Value range 0 - 1

xOffset Offset in units to be applied to the specified scanhead X

axis at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

yOffset Offset in units to be applied to the specified scanhead Y

axis at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

zOffset Reserved for future use. Offset in units to be applied to

the specified scanhead Z axis at run-time.

Note: The Z offset is optional. If the Z offset is not

specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

Transform

Description
Sets the values of the coordinate transform matrix to be applied to the

vector set before being passed to the SMC.

Session API

1040-0012 Revision 146

Transform

Syntax <set id='Transform'>{FLT M00; FLT M01; FLT M10; FLT M11}</set>

Example <set id='Transform'>1.0; 0.0; 0.0; 1.0</set>

Arguments

M00 –

M11

Represents the four transformation matrix elements (𝑋′𝑌′𝑍′) = (𝑀00 𝑀01 0𝑀10 𝑀11 00 0 1)(𝑋𝑌𝑍)

Value

range

Any floating point value

TransformEnable

Description

Enables or disables run-time coordinate transformations using the

transform selected by the ID argument. The transform information is

specified using the Priority data message SetRTJobTransform2D.

Syntax <Set id='TransformEnable'>{U16 transformID}</Set>

Example <Set id='TransformEnable'>1</Set>

Arguments

transformID Enables a specific run-time coordinate transformation or

disables all

run-time coordinate transformations.

Value range 0 = All run-time coordinate transformations are disabled

1 = Use transform ID 1

2 = Use transform ID 2

RTCCompatibility

Description

Enables or disables coordinate system compatibility with the Scanlab RTC

controller family. Enabling RTC compatibility causes the X and Y axes to be

swapped after the correction table calculations are done, effectively

causing the field to rotate 90 degrees counter-clockwise. If the Scanlab

mode is used, then Scanlab .ctb correction files can be used directly via

the session method sendCorrectionData.

Syntax <Set id='RTCCompatibility'>{BOOL state}</Set>

Session API

1040-0012 Revision 147

RTCCompatibility

Example <Set id='RTCCompatibility'>true</Set>

Arguments

state Specifies the “enabled” or “disabled” state

Value

range

true = Coordinate system compatibility with the Scanlab

RTC controller family is enabled.

false = Coordinate system compatibility with the Scanlab

RTC controller family is disabled.

HeadTransform

Descriptio
n

Sets the values of the coordinate transform matrix to be applied to each head’s
command data prior to the correction table. This transform operates on micro-vector

data. Both heads can have separate transforms.

Syntax <set id='HeadTransform'>{U16 headID, FLT M00; FLT M01; FLT M10; FLT M11}</set>

Example <set id='Transform'>1.0; 0.0; 0.0; 1.0</set>

Argument
s

headID Scanhead number to apply the offset values to

Value range 0 - 1

M00 – M11 Represents the four transformation matrix elements

(𝑋′𝑌′𝑍′) = (𝑀00 𝑀01 0𝑀10 𝑀11 00 0 1)(𝑋𝑌𝑍)

Value range Any floating point value within this range:

Value > -2.0 and Value < 2.0

Session API

1040-0012 Revision 148

6.5.9 HARDWARE INTERFACE CONFIGURATION PARAMETERS

These configuration parameters are set in the configuration files stored on the SMC and

automatically applied at power-up. They are available here to permit overriding those settings.

SMCInsGenMode

Description Sets the method for computing galvo path trajectories.

Syntax <set id='SMCInsGenMode'>{U16 mode}</set>

Example <set id='SMCInsGenMode'>0</set>

Arguments

mode The trajectory planning method used at run-time to

create marks and jumps

Value range 0 – Traditional Mode velocity step trajectories

1 – ScanPack mode acceleration/jerk limited

trajectories. Limited to use with SMAPI only.

Session API

1040-0012 Revision 149

AxisDACConfig (Obsolete)

Description

Sets the analog command output configuration for the laser galvo servo

controllers using a bitmask.

Note: This is normally set in the Controller Configuration file, but can be

overridden with this command.

Syntax

<set id='AxisDACConfig'>{HEX bitmask}</set>

Session API

1040-0012 Revision 150

AxisDACConfig (Obsolete)

Example

<set id='AxisDACConfig'>0x6</set>

Arguments

bitmask

Bitmask which defines analog output configuration

Value

range

The mask is defined as follows:

Bits 1..0 encode the range of the X & Y DACs.

Bits 3..2 encode the range of the Z DAC.

The single-ended voltage range encoding is as follows:

 00 = ±2.5V, 01 = ±5V, 10 = ±10V

Session API

1040-0012 Revision 151

LaserModeConfig

Description
Sets the laser configuration bitmask. A default value can be set in the

Laser Configuration file as the parameter LaserModeConfig.

Syntax <set id='LaserModeConfig'>{HEX bitmask}</set>

Example <set id='LaserModeConfig'>0x1FF</set>

Arguments

bitmask Bitmask which defines the laser configuration

Value

range

The bit definitions for the bitmask are shown below.

Session API

1040-0012 Revision 152

LaserModeConfig

Name Hex Bit

Value

Definition

LASER_GATE polarity 0x0001 0=active high,

1=active low

LASER_POINTER polarity 0x0002 0=active high,

1=active low

Laser Sync Mode Bit 0 0x0004 See notes below

LASER_MOD1 polarity 0x0008 0=active high,

1=active low

LASER_MOD2 polarity 0x0010 0=active high,

1=active low

LASER_MOD3 polarity 0x0020 0=active high,

1=active low

LASER_ENABLE polarity 0x0040 0=active high,

1=active low

LASER_DOUT polarity 0x0080 0=active high,

1=active low

Laser activate 0x0100 1=activate (enable)

laser output signals

Laser Power Port mode 0x0200 Set the mode of the

digital laser power port

0=8-bit mode, 1=7-bit

mode (LSB used as

strobe)

LASER_POINTER

configuration

0x0400

&

0x0800

Sets the mode of

operation of

LASER_POINTER

Session API

1040-0012 Revision 153

LaserModeConfig

0 - LASER_POINTER ==

NOT LASER_GATE

1 - LASER_POINTER ==

LASER_GATE AND NOT

LasersEnabled

2 - LASER_POINTER ==

NOT LasersEnabled

3 - LASER_POINTER ==

Asserted all of the time

Laser Power Port 0x1000 0=8-bit digital power

port, 1=analog output

A1

LASER_GATE

configuration

0x2000 0=Gating signal,

1=Modulation signal if

8-bit digital power port

bit 7 is also set.

LASER_GATE inhibit 0x4000 0=normal operation,

1=LASER_GATE is

suppressed when the

laser is turned on but

the modulation signal

is still emitted. Use in

synchronous laser

operation during

JumpAndFireList

commands.

Laser Sync Mode Bit 1 0x8000 See notes below.

Notes on Laser Sync Mode:

Laser Sync Mode bits [1 – 0] encode the laser synchronization

mode of the SMC according to the following table:

Session API

1040-0012 Revision 154

LaserModeConfig

0 = Asynchronous modulation. The laser modulation is

discontinuous, switching between the background

modulation and the lasing modulation coincident with

the LASER_GATE signal

1 = Synchronous to the modulation signal on

LASER_MOD3. LASER_MOD3 takes its modulation

settings from the background settings for

LASER_MOD1. The background signal for

LASER_MOD1 and LASER_MOD2 is set for no

modulation. In this mode, the LASER_GATE and

subsequent LASER_MOD1 and LASER_MOD2 timing is

synchronized to the rising edge of pulses on

LASER_MOD3

2 = Synchronous to the free-running modulation of

LASER_MOD2. In this mode the LASER_GATE signal is

synchronized to the falling edge of LASER_MOD2.

Both LASER_MOD1 and LASER_MOD2 are free-

running according to the LaserPulse settings defined

for them.

3 = Synchronous to the external signal source received on

LASER_STAT6. In this mode, the LASER_GATE and

subsequent LASER_MOD1 and LASER_MOD2 timing is

synchronized to the rising edge of pulses received on

LASER_STAT6.

ServoConfig (Obsolete)

Description Sets the configuration of the X, Y and Z servo control interface.

Syntax <set id='ServoConfig'>{HEX bitmask}</set>

Example <set id='ServoConfig'>0x4</set>

Arguments
bitmask Bitmask which defines the configuration of the laser galvo

servo interface

Session API

1040-0012 Revision 155

ServoConfig (Obsolete)

Value

range

The bit definitions for the bitmask are shown below.

Name Hex Bit

Value

Definition

X_SERVO_EN and

Y_SERVO_EN polarity

0x0001 0=active high, 1=active

low

Z_SERVO_EN polarity 0x0002 0=active high, 1=active

low

Enable X, Y Servos 0x0004 1=enable servos,

0=disable

Enable Z Servo 0x0008 1=enable servos,

0=disable

X_SERVO_RDY and

Y_SERVO_RDY

polarity

0x0010 0=active high, 1=active

low

Z_SERVO_RDY

polarity

0x0020 0=active high, 1=active

low

X, Y Not-ready

exception enable

0x0040 1=enable exception event

generation is X or Y servo

becomes not ready

Z Not-ready

exception enable

0x0080 1=enable exception event

generation if Z servo

becomes not ready

6.5.10 BIT-MAP RASTER SUPPORT

Bit-map raster rendering can be performed in four different modes depending on the level of quality

and throughput required. Two “fire-on-the-fly” modes and two “step-and-shoot” modes are
supported. These modes are illustrated in the following figures that show the relative galvo motion

and laser modulation control.

Session API

1040-0012 Revision 156

 Mode 0: Variable Pulse Width "Fire-on-the-fly"

Mode 0 raster patterning permits gray-scale imaging when the laser supports variable laser power as

a function of how long the laser modulation signal remains on. This is typical of how CO2 lasers

operate. In this illustration, the “high” pulse-width is proportional to an 8-bit gray-scale pixel value.

Since the laser fires at a constant rate and the start of the galvo position commands and the start of

the lasing process is tightly controlled, the start of each pixel position is accurately placed on the

substrate.

This mode is also useful in a thresholded or error-diffusion dithering gray-scale approximation

approach using Q-Switched lasers. In this case, a low-thresholded or “0” pixel value can cause the
pulse-width to be set to 0 thus skipping the firing of the laser at that pixel location. Likewise, a high-

thresholded or “1” pixel value can cause the laser to fire at that location.

MODE 0 – Constant pixel width, variable pulse duration

Vector motion

Pulse width == PixelMap[n]
n == gray-scale value, 0 <= n <= 255

Laser ON Delay

<set id=’LaserOnDelay’>delay</set>

LASER_GATE

LASER_MOD1

Pulse period == Period
<set id=’LaserPulse’>1, 0, Period</set>

Laser OFF Delay

Laser fires here

P0 P1 P2 Pn

Figure 4 - “FIRE-ON-THE-FLY”, MODE 0

Session API

1040-0012 Revision 157

Mode 1: Variable Power “Fire-on-the-fly”

Mode 1 raster patterning permits gray-scale imaging when the laser supports variable laser pulse

power as a function of variable analog or digital laser power control. In this illustration, the laser

power control is set proportional to an 8-bit gray-scale value at the beginning of a pixel period, and

the laser fires at the end of the period on each rising edge of the laser modulation signal. The pulse

width of the laser modulation signal is programmable and stays the same for each pixel in the pixel

line. Since the laser fires at a constant rate and the start of the galvo position commands and the

start of the lasing process are tightly controlled, the pixels positions are accurately placed on the

substrate.

MODE 1 – Constant pixel width & pulse duration, variable power output

Laser fires here

Vector motion

LASER_DATA, LASER_ANALOG0 or

LASER_ANALOG1 == PixelMap[n]
n == gray-scale value, 0 <= n <= 255

Set port using: <set id=’RasterParams’>port</set>

Pulse width == Width

<set id=’LaserPulse’>1, Width, Period</set>

P0

P1

P3

Pn

LASER_GATE

LASER_MOD1

Pulse period == Period

<set id=’LaserPulse’>1, Width, Period</set>

Laser OFF Delay
Laser ON Delay

<set id=’LaserOnDelay’>delay</set>

Figure 5 - “FIRE-ON-THE-FLY”, MODE 1

Session API

1040-0012 Revision 158

Standard Jump-and-fire Raster Mode

Jump-and-fire raster patterning permits very accurate gray-scale imaging with most CO2 lasers, and

gray-scale approximations using pulsed YAG lasers. For CO2 lasers, gray scale is achieved by

controlling the pulse width of the modulation signal when the laser fires at a pixel location. The

galvos are instructed to jump to each pixel location, a LaserOnDelay time is incurred to let the galvos

settle, and then the laser fires for the specified LaserOnTime. One or several pulses may be emitted

at each pixel, depending on the pulse period specified with the <set id='LaserPulse'> command.

If the LaserPulse period is set to be the same as the LaserOnTime, then a single pulse will be emitted

at each pixel. With fast CO2 lasers, this provides variable laser power proportional to the pulse width.

For pulsed YAG lasers used to expose single dots per pixel using error diffusion methods, the pulses

can be suppressed with a pulse-width value of zero, or fired with an appropriate non-zero value.

Since the galvos jump to each pixel location and stop there before firing, very precise pixel placement

is achieved regardless of the scanning direction. Precision can be increased by lengthening the

LaserOnDelay parameter but at the cost of some speed.

Session API

1040-0012 Revision 159

LASERON time == lon-time

LaserOnDelay

P0 P1 P2 Pn

LASER_GATE

Standby modulation

LASER_MOD1 ON Modulation

Pulse width == pulse-widthn

Pulse period set with the

<set id=’LaserPulse’> command

LASER_MOD1

Raster operation using Jump and Fire List

P0 pos

P1 pos

P2 pos

Pn pos

Galvo motion (Unstructured Jumps)

Pn pos ==

<Pt> Xn, Yn, Zn, pulse-widthn <Pt>

Syntax:

<JumpAndFireList LaserOnTime=’lon-time’ LaserOnDelay=’lon-delay’>
 <Pt> X0, Y0, Z0, pulse-width0 </Pt>

 <Pt> X1, Y1, Z1, pulse-width1 </Pt>

 <Pt> X2, Y2, Z2, pulse-width2 </Pt>

 …
 <Pt> Xn, Yn, Zn, pulse-widthn </Pt>

</JumpAndFireList>

Figure 6 - STANDARD “JUMP-AND-FIRE” MODE

Synchronous Fiber Laser Jump-and-fire Raster Mode

Some new fiber lasers require continuous modulation to which the laser firing circuitry phase-locks.

Firing the laser requires the assertion of the LASER_GATE signal in precise timing relationship to a

constantly emitted pulse train. Other similar lasers require that the modulation sequence be

provided by the laser and that pulses "picked" when the laser is intended to fire. Both modes of

operation are supported by the SMC.

Setting the Laser Sync Mode [1 – 0] bits to the value 2 using the job command <set

id=LaserModeConfig> causes the SMC hardware to change its laser control behavior to constantly

emit laser pulses on the LASER_MOD1 signal according to the <set id='LaserPulse'> parameters. All

subsequent laser and galvo operations are then synchronized to the pulse train. If however the Laser

Sync Mode [1 – 0] bits are set to the value 3, then the pulse stream is taken from the SMC

Session API

1040-0012 Revision 160

LASER_STAT6 digital input. This permits synchronization to lasers that create their own pulse

generating signal.

In the JumpAndFireList command, the OutputMode attribute selects how to use the pixel value. By

default, the laser pulse-width is changeable on a pixel-by-pixel basis with a special case for a pixel

value of zero. For non-zero pixel values, the pulse width is set to the pixel value (in laser-ticks) and

the LASER_GATE signal is asserted for the time (in laser-ticks) specified by the LaserOnTime attribute

of the JumpAndFireList command. If the pixel value is zero, then the LASER_GATE signal is suppressed

during theLaserOn interval. Even though the LASER_GATE signal is suppressed, the LaserOnDelay

and LaserOnTime intervals are present resulting in a consistent pixel time. The overall result is that

the laser can retain phase-lock and be selectively fired on a pixel-by-pixel basis.

The OutputMode attribute can specify any of the following alternate targets for the pixel data:

• 0 = pulse-width (default)

• 1 = LASER_ANALOG0 (analog power port)

• 2 = LASER_ANALOG1

• 3 = LASER_DATA (digital power port)

In the case of the analog output ports, 12 bits of resolution are supported, whereas only 8 bits are

supported for the digital power port. In these non-default output modes, the pixel data is applied to

the port after the jump but before the LaserOnDelay attribute value is applied. After the

LaserOnDelay, the laser will fire per the settings specified by the <set id='LaserPulse'> command, but

synchronous with the next pulse in the pulse-train. If LaserModSyncSrc is Int, then the LASER_GATE

signal will be synchronous with the leading edge of the next pulse. If LaserModSyncSrc is Ext, then

the LASER_GATE signal will be synchronous with the falling edge of the LASER_STAT6_ISO signal.

Session API

1040-0012 Revision 161

LASERON time == lon-time

LaserOnDelay

LASER_GATE signal

(suppressed if pulse-widthn == 0

Leading edge synchronized with pulse)

LASER_MOD1 signal

(continuous modulation

Pulse width == pulse-widthn

Pulse period set with the

<set id=’LaserPulse’> command)

Synchronous modulation raster operation using

Jump and Fire List

P0 pos

P1 pos

P2 pos

Pn pos

Galvo motion (Unstructured jumps)

Pn pos ==

<Pt> Xn, Yn, Zn, pulse-widthn <Pt>

Syntax:

<set id=’LaserSyncType’>1</set>

<set id=’LaserModDelay’>5</set>

<set id=’LaserPulse’>1, pulse-width, pulse-period</set>

<JumpAndFireList LaserOnTime=’lon-time’ LaserOnDelay=’lon-delay’>
 <Pt> X0, Y0, Z0, pulse-width0 </Pt>

 <Pt> X1, Y1, Z1, pulse-width1 </Pt>

 <Pt> X2, Y2, Z2, pulse-width2 </Pt>

 …
 <Pt> Xn, Yn, Zn, pulse-widthn </Pt>

</JumpAndFireList>

P1 (PW != 0)

P2 (PW == 0)

LASER_GATE

not asserted,

prior PW

retained Pn (PW != 0)

LaserModDelay

P0 (PW != 0)

Figure 7 - SYNCHRONOUS “JUMP-AND-FIRE” MODE

6.5.11 BIT-MAP RASTER COMMANDS

Raster operations are defined through the use of the commands defined in the following section

(“Error! Reference source not found.”). These commands can be freely placed anywhere in a job.

The API supports a pixel mapping table that permits non-linear mapping of 8-bit pixel values to the

appropriate laser control values required by the selected mode. This permits a linear range of gray-

scale pixel values to scale into a range that is appropriate for the behavior of the laser and materials

being used.

Session API

1040-0012 Revision 162

Bit-Map Raster Parameters and Commands

RasterMode

Description Selects the mode of raster operation.

Syntax <set id='RasterMode'>{U16 mode}</set>

Example <set id='RasterMode'>1</set>

Arguments

mode raster mode

Value range 0 = Variable Pulse Width "Fire-on-the-fly"

1 = Variable Power "Fire-on-the-fly"

PixelMap

Description Sets the values of the pixel mapping table.

Syntax <set id='PixelMap'>{U16 PM0; U16 PM1; … U16 PM255}</set>

Example <set id='PixelMap'>0; 1; 2; ... 255</set>

Arguments

PMn 256 entries are used to form a table that is indexed by

the actual gray-scale pixel value specified in a RasterLine

command. The table value indexed by the gray-scale

pixel value represents the variable part of laser control

system per the selected raster mode.

Mode Table value interpretation

 0 Laser ON pulse width

 1 Laser power control

Value range 0 - 255

RasterParams

Description Sets mode-specific parameters.

Syntax <set id=’RasterParams’>{U16 param}</set>

Example <set id=’RasterParams’>1</set>

Session API

1040-0012 Revision 163

RasterParams

Arguments

param Mode Parameter Selection

 1 Pixel output port selection

 0 = LASER_ANALOG0

 1 = LASER_ANALOG1

 2 = LASER_DATA (8-bit digital port)

Value

range

0 - 2

RasterLine

Description Specifies the data and trajectory of a raster line.

Syntax
<RasterLine X=’{FLT xDest}’ Y=’{FLT yDest}’ Z=’{FLT zDest}>{U8 P0; U8 P1;

… U8 Pm}</RasterLine>

Example <RasterLine X=’10000’ Y=’0’ Z=’0’>25;15;44;0;0;33;34, ...</RasterLine>

Arguments

xDest

yDest

zDest

X, Y, Z coordinate of the end of the raster line. Values are

floating point and are converted into system “bits” units
per the Units command.

Value

range

-231 - 231-1

Note: Depending on the unit selection, these values can

take on a range which represents the X, Y, Z virtual field

size of the system in floating point notation.

P0 - Pn A list of 8-bit pixel values to be exposed along the line. The

values are used to index the PixelMap table to fetch an

actual laser power level control that will be set at each

pixel location. A maximum of 65535 pixels per line can be

specified.

Value

range

0 - 255

Session API

1040-0012 Revision 164

6.5.12 POLYGON BIT-MAP RASTER COMMANDS

Polygon raster operations are defined through the use of the commands defined in the following

section (“Polygon Bit-Map Raster Parameters and Commands”). These commands can be freely

placed anywhere in a job after calculating parameters based on a polygon device configuration file.

Because of the high rates of speed in a polygon system, marking is performed by firing (or not) a

single laser pulse at each pixel location. Laser power control is static for the entire pixel line. The

implementation is similar to Raster Mode 0 where pixels are fired on-the-fly, but without pixel-level

power control.

To create the fire (or not) pixel data, the 8-bit pixel data specified in the raster line represents a

packed value of 8 pixels, one bit per pixel. The least significant bit is emitted first, working right to

left to the most significant bit. Sequences of four RasterLine pixel values are processed together to

form a 32-pixel entity. A complete raster line should contain a multiple of four pixel entries. The API

will pad with non-firing pixel data at the end of the line if insufficient pixel entries are provided.

Gray-scale approximation can be accomplished by using error diffusion dithering techniques at the

application level. This capability is not directly supported by this API.

Polygon Bit-Map Raster Parameters and Commands

Polygon operations require precise synchronization of the polygon position, corrective galvo

operation, and laser modulation. The following diagram shows the relevant timing relationships.

Session API

1040-0012 Revision 165

Polygon Index Pulse

Polygon SOS Pulse

Facet Count (logic & FW)

Work Delay *

0 1 2

Pixel data processing **

Laser signal emission

See pixel timing

diagrams

Mark Delay

Jump to next line

* Work Delay = SOS delay + Image offset delay + Facet delay + Inset delay

• SOS delay is calculated from SOS angle offset to the edge of the Galvo

field, and the polygon scan speed (lines-per-sec) value

• Image offset delay is calculated from job layout and Mark Speed ***

• Facet delay is calculated from the line-start shift calibration

measurements in micron units

• Inset delay is calculated as a % of pixel period

** In the pixel data processing interval, the X galvo is concurrently applying

correction table value in the direction of the scan

*** The scan field size can be smaller than the galvo field size due to the choice

of scan lens. The galvo field size is defined in the correction table file using the

galvo ½ mechanical angle property. The field size in mm is defined by the

system X-Y calibration factors (bits/mm) where the bits range is 2^^24. The

calibration factors are initially derived from the lens focal length and galvo

range, but are adjusted as needed during calibration.

**** Mark Speed (mm/sec) is calculated from the system X-Y calibration

factors, the galvo field size and the polygon scan speed (lines-per-sec) value

Image on

canvas

(<= Galvo field)

Lens-limited scan field ***

(e.g. 12.34 mech-deg)

SOS Offset
17.16 +/- 1.5

deg-mec to

scan field

Polygon Scan field (36 mech-deg)

Image offset

Jump Delay

Galvo jump time

Prepare for next pixel line

Galvo jumps to the next line execute in parallel to

preparing data for the next scan line. The jump +

jump delay must be finished prior to the end of the

next Work Delay. The jump speed is automatically

chosen to ensure the jump is completed in this

interval.

The next scan line preparation must be completed prior to the

next SOS pulse because the Work Delay is calculated

separately for each facet. This time varies as a function of the

image size and placement in the scan field, the polygon speed,

and the internal geometry of the scan-head

Laser Pipeline Delay

6.5 +/- 1.5

mech-deg

Galvo field (22 mech-deg)

SOS Offset
12.33 +/- 1.5

deg-mech to

galvo field

HW triggered

There are two laser modulation schemes supported when polygon operation is enabled (see “Error! R

eference source not found.” section). These are shown in the following figures.

Session API

1040-0012 Revision 166

Pixel Clock

(internal)

LASER_GATE1

LASER_MOD1

LASER_GATE2

LASER_MOD2

Td1

Tp2

Td2

Tp

Modulation Mode 0: Gated triggering

Tp = Pixel Period. Dependent on polygon speed and output DPI. Internally calculated.

Tg1 & Tg2 = Pixel Gate signal. Starts after Pixel Clock. Recommend length be specified as % of pixel period. May be made

 continuous if 100% of Pixel Period.

Tp1 & Tp2 = Laser Trigger Pulse. Supressed if pixel value == 0. Recommend length be specified as % of Pixel Gate length

Td1 & Td2 = Laser Trigger Pulse Delay. Units of Nano Seconds rounded up/down to nearest 10 Nano Seconds.

Pixel Data

Suppressed

Suppressed

Tg1

Tp1

Tg2

Pixel value = 1 Pixel value = 0

Session API

1040-0012 Revision 167

Pixel Clock

LASER_GATE1

LASER_MOD1

LASER_GATE2

LASER_MOD2

Td1

Tp2

Td2

Modulation Mode 1 – Continuous triggering with selective gating

Tp = Pixel Period. Dependent on polygon speed and output DPI. Internally calculated.

Tg1 & Tg2 = Pixel Gate signal. Starts after Pixel Clock. Suppressed if pixel value == 0. Recommend length be

specified as % of pixel period

Tp1 & Tp2 = Laser Trigger Pulse. Always present. Recommend length be specified as % of Pixel Gate length

Td1 & Td2 = Laser Trigger Pulse Delay. Units of Nano Seconds rounded up/down to nearest 10 Nano Seconds.

Pixel Data

Suppressed

Suppressed

Tg1

Tg2

Tp1

Tp

Pixel value = 1 Pixel value = 0

Session API

1040-0012 Revision 168

The following commands are used to configure polygon operation.

PolygonMode

Description Selects the mode of polygon raster operation.

Syntax <set id='PolygonMode'>{U16 mode}</set>

Example <set id='PolygonMode'>1</set>

Arguments

mode Polygon Raster Mode

Value range 0 = Normal mode – Gated triggering

1 = Continuous mode – Continuous triggering with selective gating

PolygonSync

Description Sets scan delay parameters and sync with SMC

Syntax <set id='PolygonSync'>{float tScanDelayInSec}</set>

Example <set id='PolygonSync'>0.0035</set>

Arguments

tScanDelayI

nSec

Set the delay, based on polygon speed, from when the Start of Scan

pulse is received, to when pixels are emitted. This delay is a composite

delay referred to as the Work Delay in the overall polygon timing

diagram.

Value range Based on calculations involving entries from the polygon device

configuration and image size/placement considerations.

RasterParams (Polygon)

Description Sets pulse period for polygon raster

Syntax <set id=’RasterParams’>{U16 pulsePeriodInTicks}</set>

Example <set id=’RasterParams’>45</set>

Arguments pulsePeriodInTicks Set pixel period

Session API

1040-0012 Revision 169

RasterParams (Polygon)

Value range 0 - 65535

LaserModDelay

Description
Sets the modulation delay of the laser. A default value for this parameter can be set in

the Laser Configuration file as parameter LaserModDelay.

Syntax <set id='LaserModDelay'>{U16 delay1InNsec},{U16 delay2InNsec}</set>

Example <set id='LaserModDelay'>30,90</set>

Arguments

delay The delay (in nano seconds) from the leading edge of LASER_MOD1 and

LASER_MOD2 to the output of the first pulse on the LASER_GATE1 and

LASER_GATE2 signals respectively.

Value range Within range of pulse period which is calculated by a device

configuration file.

6.5.13 MARK-ON-THE-FLY SUPPORT

Marking on the fly (MOTF) support is provided through the use of several configuration and

activation commands. Motion tracking in either the X or Y-axis can be configured using a digital

quadrature input, or by simulating the motion in situations where an encoder feedback is not

available but the motion speed is relatively constant.

The MOTF configuration is set using the parameters MotfCalFactor, MotfMode, and MotfDirection

defined in the Controller Configuration file and additionally changeable as part of a job. Run-time

control of the MOTF operation is performed through the use of the commands MotfEnable,

MotfWaitForCount, MotfResetJump, MotfTrigger, and MotfWaitForTrigger. Error! Reference source n

ot found.Error! Reference source not found. on page Error! Bookmark not defined. shows the

intended use of these commands.

The actions of the MOTF commands are designed to permit multiple marking sequences within a

single job, each of which requires separate frames of data that must be precisely spaced in distance.

This normally occurs when the required markings exceed the physical limits of the lens field. Wire

file:///C:/Source/source-a/Documentation/trunk/SMC/Manuals/SMC%20Software%20Reference%20Manual%20-%20Copy.docx%23LaserModDelayR2Table

Session API

1040-0012 Revision 170

marking applications are a good example of when different information must be marked at precise,

but relatively long, distances along the length of the wire.

Mark-on-the-fly Parameters

MotfCalFactor

Description

Relates laser positioning bits to motion encoder counts. The default

value for MotfCalFactor can be set as MotfCalFactor in the Controller

Configuration file.

Note: If used in a job, this command must appear after <set

id='MotfDirection'>.

Syntax <set id='MotfCalFactor'>{FLT calFactor}</set>

Example <set id='MotfCalFactor'>23.345</set>

Arguments

calFactor Calibration factor (in bit counts) for relating laser

positioning bits to motion encoder counts. A negative

number corresponds to a downward counting encoder

tracking forward motion.

Value range -32768.0 - 32767.0

MotfDelayComp

Description

Sets run-time compensation for fixed reaction delays in the hardware

from the time a MotfWaitForCount is executed to when marking actually

occurs. This fixed time delay can result in variable positional offsets as a

function of the speed of the material transport system.

Syntax <set id='MotfDelayComp'>{U16 delay}</set>

Example <set id='MotfDelayComp'>200</set>

Arguments

delay Run-time compensation (in µsecs) for the fixed reaction

delays in the hardware

Value range 0 - 65535

Session API

1040-0012 Revision 171

MotfDirection

Description

MOTF orientation and direction in degrees. A default value for

MotfDirection can be set in the Controller Configuration file.

NOTE: This command must appear before <set id='MotfCalFactor'> and

<set id='MotfMode'>.

Syntax <set id='MotfDirection'>{U16 direction}</set>

Example <set id='MotfDirection'>270</set>

Arguments

direction Target travel direction relative to a galvo coordinate

system.

Value

range

0 - left to right in the X axis

90 - bottom to top in the Y axis

180 - right to left in the X axis

270 - Top to bottom in the Y axis

MotfMode

Description

Defines how MOTF position information is derived. If an encoder option

is selected, the quadrature encoder inputs are used. If a simulate-

encoder option is selected, a 1Mhz clock is used to increment the

encoder counter. A default value for MotfMode can be set in the

Controller Configuration file.

Syntax <set id='MotfMode'>{U16 mode}</set>

Example <set id='MotfMode'>0</set>

Arguments

mode Position tracking mode

Value range 0 = Use encoder, 1D

1 = Simulate encoder, 1D

2 = Use encoders, 2D

3 = Simulate encoders, 2D

Session API

1040-0012 Revision 172

MotfTriggerEx

Description

This command performs the same function as MotfTrigger (see above),

but it but adds an argument to specify a distance threshold that must be

exceeded before the trigger logic is armed. When this command is

issued—and immediately after a MotfWaitForTrigger command

releases—the trigger counter is cleared and then counts until the

threshold distance is exceeded. When the trigger distance is exceeded,

the signal trigger logic is armed to look for the external trigger event.

When the trigger event is seen, the counter is cleared once again and the

MotfWaitForTrigger command will be armed for release when the count

exceeds the specified value.

Syntax <set id='MotfTriggerEx'>{U16 pin; U16 edge; U32 threshold}</set>

Example <set id='MotfTriggerEx'>0; 1; 25000</set>

Arguments

pin Input pin identifier

Value range 0 – 31

Note: This must be the same input pin identifier as in

WaitForIO.

edge The edge to trigger the start of the counter

Note: The edge sense is dependent on how the input is

wired.

Value range 0 = Falling edge

1 = Rising edge

threshold Number of scaled encoder counts (in bits) to wait for

before arming the trigger logic

Value range 0 – 232-1

Session API

1040-0012 Revision 173

MotfTriggerEvent

Description

This command is used to measure the distance an external transport

system has traveled between transitions of an external signal. It is used in

conjunction with the Priority message SetDigitalInputConfig. When

executed, it enables the trigger counter for continuous counting and

clears it. The trigger counter counts encoder counts in parallel with the

normal MOTF operation and is not affected by normal MOTF state

transitions.

The command specifies an input pin that is expected be armed for event

generation using the SetDigitalInputConfig message. If the specified signal

causes a DigitalIO event, then the event message will contain the trigger

couner value at the time of the event generation. The counter is then

cleared and begins counting again.

Note: The use of this command overrides the MotfTrigger and

MotfTriggerEx commands..

Syntax <set id='MotfTriggerEvent'>{U16 pin}</set>

Example <set id='MotfTriggerEvent'>2</set>

Arguments

pin Input pin identifier

Value range 0 – 31

Note: The input pin identifier is the same as used in

WaitForIO.

Session API

1040-0012 Revision 174

Mark-on-the-fly Commands

MotfEnable

Description

Enables or disables Mark-on-the-fly (MOTF) tracking.

Upon enabling, the scaled MOTF encoder counts are added to the uVector

values on each Jump and Mark vector. If in simulate mode (see

MotfMode), the counter is incremented at a 1Mhz rate.

Disabling does the following:

Disables uVector compensation

Clears the HW encoder counter

Zeros a firmware snapshot of the scaled HW counter

Enables the HW encoder counter to count

Syntax <MotfEnable>{U16 state}</MotfEnable>

Example <MotfEnable>1</MotfEnable>

Arguments

state Specifies whether MOTF tracking is to be enabled or

disabled

Value range 0 = MOTF tracking is disabled.

1 = MOTF tracking is enabled. Tracking happens only

during Mark or Jump operations. Otherwise the galvos

are held stationary.

2 = MOTF tracking is enabled for continuous tracking.

Tracking is immediate and galvos track the counters

continuously except for during a MotfWaitForCount

operation.

3 = MOTF tracking is enabled for continuous tracking

with edge of field detection. Tracking is immediate and

galvos track the counters continuously except for during

a MotfWaitForCount operation. If the galvos reach the

edge of field while marking, the marking motion is

temporarily suspended with the laser left on. Motion

continues when the Motf counter biased position

commands bring the galvos back into the field of view.

Session API

1040-0012 Revision 175

MotfWaitForTrigger

Description

Configures MOTF to wait for the raw (unscaled) hardware encoder

trigger counter to reach or exceed a specific value. (The trigger counter

should have previously been armed using the MotfTrigger command.)

The semantics are as follows:

 while(abs (current encoder trigger counter)) < count))

 wait;

 reset trigger condition and current encoder counter to zero.

Syntax <MotfWaitForTrigger>{U32 count}</MotfWaitForTrigger>

Example <MotfWaitForTrigger>24557</MotfWaitForTrigger>

Arguments
count Raw encoder count (in bits)

Value range 0 - 232-1

MotfResetJump

Description

Pre-positions the galvos to the start of the next field of patterns to be

processed and takes into account the fact that the galvo starting points

are not at the last “ideal” commanded position, but at a position offset
by the MOTF counter.

Note: At the time this command is executed, a snapshot of the MOTF

counters is taken for possible use if the mode of the next

MotfWaitForCount is "relative."

Syntax
<MotfResetJump{FLT xCoordinate; FLT yCoordinate; FLT zCoordinate;

U16 jumpDelay}</MotfResetJump>

Example <MotfResetJump>-23000; 400; 0; 200</MotfResetJump>

Arguments

xCoordinate Value that represents the X-axis coordinate of the start

of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the X virtual field size

of the system in floating point notation.

Session API

1040-0012 Revision 176

MotfResetJump

yCoordinate Value that represents the Y-axis coordinate of the start

of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Y virtual field size

of the system in floating point notation.

zCoordinate Value that represents the Z-axis coordinate of the start

of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can

take on a range which represents the Z virtual field size

of the system in floating point notation.

jumpDelay Length of time (in µsecs) to delay after the execution of

this command

Value range 0 - 65535

LaserScribe

Description Turns the laser on for the specified number of MOTF counts.

Syntax <LaserScribe>{U32 count}</LaserScribe>

Example <LaserScribe>2000</LaserScribe>

Arguments
count Scaled encoder counts (in bits)

Value range 0 - 231-1

LaserRegulation

Description
Conditions the system to dynamically adjust the laser pulse duty-cycle as

a function of the speed of the material transport system.

Session API

1040-0012 Revision 177

LaserRegulation

Syntax
<LaserRegulation>{U16 fMin; U16 fMax; FLT dcMin; FLT

dcMax}</LaserRegulation>

Example <LaserRegulation>2000; 10000; .3; .8</LaserRegulation>

Arguments

fMin Minimum encoder frequency below which the laser

duty-cycle is set to dcMin

Value range 0 – 10000 encoder counts per 10ms

fMax Maximum encoder frequency above which the laser

duty-cycle is set to dcMax

Value range 0 – 10000 encoder counts per 10ms

dcMin Minimum duty-cycle expressed as a fraction

Value range 0.0 – 1.0

dcMax Maximum duty-cycle expressed as a fraction

Value range 0.0 – 1.0

Session API

1040-0012 Revision 178

Figure 8 - MARK-ON-THE-FLY BASIC PROCESS FLOW

Instructions making up the MOTF loop can be sent to the SMC in advance of them being required as

long as the job data does not vary. Synchronization with the external detectors is handled

completely in the SMC.

Session API

1040-0012 Revision 179

SMC MOTF for fixed relative spacing of multiple fields (wire marking)

Figure 9 - MARK-ON-THE-FLY USAGE IN WIRE MARKING

Basic Job Structure

First time initialization:

<!-- Activate MOTF counter logic. The MotfMode, MotfDirection, and MotfCalFactorparameters

should be set prior to this point. -->

<MotfEnable>0</MotfEnable>

Job body:

<!-- A. Reset the MOTF Counter to zero and then enable counting -->

<MotfEnable>0</MotfEnable>

<!-- B. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- C. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- D. Pattern the first image “ABC123” while tracking -->

<JumpAbs>Xa0; Ya0; Za0</JumpAbs>

<MarkAbs>Xa1; Ya1; Za1</MarkAbs>

<MarkAbs>Xa2; Ya2; Za2</MarkAbs>

…

Session API

1040-0012 Revision 180

<!-- E. Disable tracking and jump to the beginning of the second “DEF456" vector set -->

<MotfResetJump>Xb0; Yb0; Zb0; 0</MotfResetJump>

<!-- F. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- G. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- H. Pattern the second image “DEF456” while tracking -->

<JumpAbs>Xb0; Yb0; Zb0</JumpAbs>

<MarkAbs>Xb1; Yb1; Zb1</MarkAbs>

<MarkAbs>Xb2; Yb2; Zb2</MarkAbs>

…

<!-- I. Disable tracking and jump to the beginning of the third “HIJ789" vector set -->

<MotfResetJump>Xc0; Yc0; Zc0; 0</MotfResetJump>

<!-- J. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- K. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- L. Pattern the third image “HIJ789” while tracking -->

<JumpAbs>Xc0; Yc0; Zc0</JumpAbs>

<MarkAbs>Xc1; Yc1; Zc1</MarkAbs>

<MarkAbs>Xc2; Yc2; Zc2</MarkAbs>

…

<!-- M. Disable tracking and jump to the beginning of the vector set -->

<MotfResetJump>Xa0; Ya0; Za0; 0</MotfResetJump>

<!-- N. Repeat steps A-M

Session API

1040-0012 Revision 181

SMC MOTF for multi-field imaging using 32-bit virtual addressing

Figure 10 - MARK-ON-THE-FLY USAGE IN MULTI-IMAGE-FIELD APPLICATIONS

Basic job structure for each SMC controlling a scan-head

First time initialization:

<!-- Activate MOTF counter logic. Prior to this point, the MotfMode, MotfDirection, and

MotfCalFactor parameters should be appropriately set. MotfEnable(0) initializes the logic and

counters, begins counting, but does not perm it galvo tracking of the MOTF motion -->

<MotfEnable>0</MotfEnable>

<!-- Set condition for MOTF HW trigger (e.g. START at logic level 1) Distance counter is reset to zero.

If trigger condition is satisfied at the time of the command, the counter starts counting immediately.

Otherwise, the counter starts counting on a transition from 0 to 1 of START. Note that any input

signal can be selected per the same definition as W aitForIO -->

<set id='MotfTrigger'>0, 1</set>

Job body:

<!-- A. Wait for the trigger to be satisfied and then the count to be met or exceeded. The distance is

expressed in scaled encoder counts as are used in the MotfWaitForCount instruction. The count should

Session API

1040-0012 Revision 182

be chosen such that travel-direction, origin of the artwork and the origin of the scan-head are

coincident -->

<MotfWaitForTrigger>distance-D-in-unscaled-encoder-counts</MotfWaitForTrigger>

<!-- When the wait completes, the hardware trigger is automatically reset and monitoring of the next

part in initiated -->

<!-- B. At this point the coordinate systems of the artwork and the galvo system need to be

synchronized. This happen by resetting the MOTF logic again. The master scaled MOTF encoder

counter resets to zero, but tracking is still disabled. -->

<MotfEnable>0</MotfEnable>

<!-- C. Now we wait until the vector set is in the field of view of the scan-head. This is expressed as

dist-1 and is in artwork coordinates scaled to 32-bit virtual galvo comm and bits. The

mode='absolute' attribute indicates that the wait is to use absolute scaled encoder counts. The

normal (mode='relative') behavior is to wait for a count relative to the position when the last

MotfResetJump occurred -->

<MotfWaitForCount mode='absolute'>dist-1</MotfWaitForCount>

<!-- D. Now we can mark the vectors but we must enable tracking first. The MotfEnable(1) command

samples the current MOTF counter value which is then used in subsequent galvo motion commands

to translate the artwork coordinates into the scan-head coordinates -->

<MotfEnable>1</MotfEnable>

<!-- E. Mark the vectors. Vector end points are specified in the artwork coordinate system scaled to

32-bit virtual galvo comm and bit units. These 32-bit virtual coordinates are translated into the scan-

head command range by subtracting in real-time the MOTF encoder counter value sampled at the

MotfEnable(1) command and the constantly incrementing MOTF encoder counter value -->

<JumpAbsEx>X0; Y0; Z0</JumpAbsEx>

<MarkAbsEx>X1; Y1; Z1</MarkAbsEx>

…

<!-- F. When all of the vectors in the current field have been imaged we disable tracking (but not

counting) and re-position the galvos to a wait location that will minimize startup motion for the next

vector set. The MOTF counter continues to increment thus tracking the material through the system.

-->

<MotfResetJump>Xw; Yw; Zw</MotfResetJump>

Session API

1040-0012 Revision 183

<!-- G. Repeat sequence C-F for each frame that needs to be imaged. At the end of the entire job,

begin at step A again. Since the trigger logic was automatically reset in the previous iteration it will

have been triggered already and the counter will be very near the desired terminal value and step A

will execute very quickly -->

6.5.14 VELOCITY CONTROLLED LASER MODULATION

Galvos make abrupt turns when rendering polygons, and the actual point of laser focus does not

follow the ideal path described by the vectors. This is because of limitations of servo bandwidth

imposed by finite inertia of the motors and mirrors, and restricted power supply voltage and current.

Instead, the galvos follows a curved path joining one line segment to the next. These arcs introduce

localized distortion of the final image, which is generally undesirable.

The PolyDelay parameter compensates for this effect by introducing a delay in the command stream

generation. The delay gives the galvos time to reach the target destination before a new command

directs them along the next vector segment. Normally the amount of time required reach the target

destination is proportional to the angular change of the vector segments. Smaller angles require less

time, and larger angles require more time. This proportionality is automatically managed using the

VariPolyDelayFlag parameter.

The net effect of using non-zero PolyDelay values is that the laser focus point velocity slows down

proportional to the length of the delay. Although the rendered geometry is more accurate, the

energy density along the focus path increases in the regions of lower velocity. The same effect is also

present at the beginning and end of marking vectors. A user manages these effects using the

LaserOnDelay and LaserOffDelay parameters, which are normally adjusted to avoid “burn-in” effects
at these points in a vector object.

The SMC provides a mechanism to automatically compensate for the effects of the changes in vector

speed at the terminal and way-points of the vector drawing process. This mechanism offers three

separate compensation modes, which would be selected based on the type of laser being used. An

overview of this behavior is shown in the following figure.

Session API

1040-0012 Revision 184

Figure 11 - VELOCITY CONTROLLED LASER MODULATION OVERVIEW

Mode 1 – Duty-cycle

Users of CO2 lasers normally control average power by selecting an appropriate modulation duty-

cycle. These lasers usually operate at a fixed frequency or pulse period, and the job varies the power

by changing the pulse width. Mode 1 permits dynamic scaling of the pulse width from the normal job

setting down to a settable percentage value of maximum power. This is illustrated in the following

two figures, where the duty-cycle is varied between 80% and 20%.

Session API

1040-0012 Revision 185

Figure 12 - VELOCITY CONTROLLED LASER MODULATION: DUTY-CYCLE, ACCELERATION EFFECT

Figure 13 - VELOCITY CONTROLLED LASER MODULATION: DUTY-CYCLE, DECELERATION EFFECT

Session API

1040-0012 Revision 186

Mode 2 – Frequency

Users of YAG lasers have a choice of two power control modes. Since YAG lasers emit energy when

they are Q-Switched, the individual pulse energy level can normally be controlled by changing the

pumping energy and/or the modulation frequency. Mode 2 permits changing the average power by

dynamically changing the pulse frequency while maintaining a constant pulse width. The frequency

is reduced proportional to the galvo vector speed. This is illustrated in the following two diagrams

which show the frequency changing from 100KHz down to 10KHz.

Figure 14 - VELOCITY CONTROLLED LASER MODULATION: FREQUENCY, ACCELERATION EFFECT

Session API

1040-0012 Revision 187

Figure 15 - VELOCITY CONTROLLED LASER MODULATION: FREQUENCY, DECELERATION EFFECT

Mode 3 – Laser Power

Mode 3 controls the analog or digital laser power setting proportional to the velocity. This is

illustrated below where laser power, represented by an analog control voltage, varies between 80

and 20%. Note that the laser modulation does not change in this mode.

Figure 16 - VELOCITY CONTROLLED LASER MODULATION: LASER POWER

Session API

1040-0012 Revision 188

Velocity Controlled Laser Modulation Compensation

The VelocityComp command is used to implement velocity controlled laser modulation

compensation.

VelocityComp

Description

Sets the mode and behavior of the velocity controlled laser modulation

compensation. If the first argument is zero, then arguments two and

three may be omitted.

Syntax
<set id='VelocityComp'>{U16 mode; U16 maxComp; U16

aggressivity}</set>

Example <set id='VelocityComp'>1; 20; 1000</set>

Arguments

mode Mode of operation for velocity-controlled laser

modulation compensation

Value range 0 = Disabled

1 = Duty-cycle (pulse width changes)

2 = Frequency (pulse period changes)

3 = Power (analog or digital power changes)

maxComp The limit of the compensation that will be done in

terms of percentage of the maximum possible value.

Compensation will be applied proportional to the

calculated vector velocity of the mirror.

Value range 0 - 100

aggressivity How aggressively the system will compensate for

velocity changes. The higher the number, the quicker

the change will be applied. This number is in Hertz,

and it directly correlates to the tuning bandwidth of

the galvo servos.

Session API

1040-0012 Revision 189

VelocityComp

Value range 500 - 5000

6.5.15 VIA-HOLE DRILLING SUPPORT

The SMC has several extensions designed to support open-loop and closed-loop laser drilling modes.

These extensions will work with galvo/servo systems that provide real-time in-position feedback via

Digital I/O, XY2-100 Status, or GSBus Status.

Drilling data can be applied using two different commands:

1. The JumpAndFireList command which specifies a list of discrete two- or three-axis coordinate

data along with laser pulse-width values for two laser modulation outputs.

2. The JumpAndDrillList command which specifies a list of discrete two-axis coordinate data

with drilling specific laser firing and synchronization parameters.

The coordinate information in both of these commands represents discrete jump points that are

applied without profiling. Galvo/servo controllers used in this mode must be capable of handling

transient command inputs that could range in distance from single-bit to full-field. The expectation is

that real-time in-positon feedback is available for sensing by the SMC as is the case with GSBus

connected LightningTM II digital servo controllers. Both closed-loop and open-loop modes of

operation are supported as described below. More detailed information about via-hole drilling using

the SMC can be found in application notes on the Cambridge Technology web site

www.camtech.com/downloads/customers. Please contact Cambridge Technology Technical Support

for the download password: support-us@cambridgetechnology.com

Closed-loop operation

In fully closed-loop mode, the laser firing part of the JumpAndFireList and JumpAndDrillList execution

is configured to check for in-position before firing. Checking for up to four axes is done in parallel. A

programmable timeout is used to protect against abnormal settling times or galvo fault conditions.

In such a case, drilling is stopped and an exception event is generated and forwarded to the host

application for handling.

SettleCheckMode is used to configure closed loop drilling behavior.

http://www.camtech.com/downloads/customers
mailto:support-us@cambridgetechnology.com

Session API

1040-0012 Revision 190

SettleCheckMode

Description

Sets the settle-checking behavior of the JumpAndFireList and

JumpAndDrillList commands. Used to validate the position of the galvos

after a move is made and before the laser is fired.

Syntax
<set id='SettleCheckMode'>{U16 input; HEX U32 mask; HEX U32 value;

U16 timeout; U16 checkDelay; U16 checkMode }</set>

Example
<set id='SettleCheckMode'>3; 0x00006666; 0x00006666; 10000; 80;

0</set>

Arguments

input Selects the settle-checking inputs.

Value range 0 = disabled

1 = check XY2-100 status

2 = check standard digital I/O

3 = check GSBus status

mask Bits to consider (hex) in 32-bit units

Value range 0 - 0xFFFFFFFF

value Bit values when settled (hex) in 32-bit units

Value range 0 - 0xFFFFFFFF

Timeout /

FiringAdjust

If checkMode = 0, timeout defines how long to

wait (in usec) for value to match the mask. If the

timeout value is exceeded, and exception is

generated and the job aborted.

If checkMode = 1 or 2, (semi-open-loop or full-

open-loop), the settle checking is done after the

greater of settleCheckDelay or the maximum jump

time selected from the axis jump-time tables for

the distance requested. In these cases, the

timeout value is interpreted as a firing-adjust

value and is added to the jump delay to

programmatically increase or decrease the

amount of time before firing the laser.

Session API

1040-0012 Revision 191

SettleCheckMode

Value range When interpreted as a timeout: 0 - 85.899 sec

When interpreted as a firing-adjust: -500 to 500

usec

checkDelay How long to wait (in µsecs) before checking for

settling after initiating a jump. This provides time

for the galvos to go out of position before they

are checked for arrival at the new position.

If mode = 1, both the XY2-100 and XY2-100e

status ports are examined concurrently. XY2-100

status bits are in position[15..0] and XY2-100e are

bits position[31..16].

If mode = 2, the bits are interpreted as defined in

the CurrentDIO value of the Broadcast Status Data

packet.

If mode = 3, the GSBus status register is compared

where four-bit fields are used for each axis.

Note: If checkMode does not = 0, then this value

acts as a minimum jump time specification over-

riding the data calculated during the

CalibrateJumpTime operation.

Value range 0 - 85.899 sec

 checkMode Selects the checking behavior.

Value range 0 = Before firing the laser (closed-loop mode)

1 = After firing the laser (semi-open-loop, uses

jump-time table)

2 = Do not check (full open-loop, uses jump-time

table)

Note: If checkMode is set to 1, in position

checking is performed after the galvos have been

commanded to move. Therefore there is only a

short interval of time when in-position may still be

valid.

Session API

1040-0012 Revision 192

Open-loop operation

In open-loop mode drilling the galvos are calibrated for the amount of time it takes to execute a

jump and reach an in-position condition. During calibration, a sequence of variable length jumps is

executed and the settling time recorded in a table, one table for each axis. During execution of the

JumpAndFireList or JumpAndDrillList command, the distance required of each axis is used to index

each of the tables and jump times retrieved. If the distance does not fall on a table entry, then linear

interpolation between table entries is performed to calculate a value. The maximum of the table

values retrieved is used to wait before firing. In this mode it is possible to cause the laser to fire

earlier or later using FiringAdjust parameter. Firing earlier may permit improved throughput at the

sacrifice of some quality.

The galvos are commanded to jump to the next as soon as the laser firing starts. This permits overlap

of operations recognizing the fact that galvo inertia prevents instantaneous motion when a

command is received.

Calibration of the jump-times is invoked using the CalibrateJumpTime command. This command is

available for use only with Lightning II galvos systems connected to the SMC via the GSBus. The

command SettleCheckMode must be used prior to CaibrateJumpTime to set the properties

describing how settle checking is to be performed during calibration.

CalibrateJumpTime

Description

Builds run-time tables of measured jump times which are then used in the

execution of the JumpAndFireList or JumpAndDrillList commands. The

resulting table data is used to calculate the time that the galvos will

achieve in-position status based on a requested jump distance.

Syntax
<CalibrateJumpTime>{HEX U32 axisMask; U32 averagingMode; FLT

maxDistance; FLT smallestStep; BOOL logData }</CalibrateJumpTime>

Example
<CalibrateJumpTime>0x3, 0, 80.000000, 0.100000,

TRUE</CalibrateJumpTime>

Arguments

axisMask Select the X and Y axes of a head for calibration.

Two-bit-per-head bit-mask. The least significant of

the two bit field is the X axis. Multiple heads are

specified by enabling additional two-bit fields in

successively higher-order bit fields.

Session API

1040-0012 Revision 193

CalibrateJumpTime

Value range 0x0 = No axes selected

0x1 = Head 1, X axis

0x2 = Head 1, Y axis

0x3 = Head 1, X and Y axis

0x4 = Head 2, X axis

0x8 = Head 2, Y axis

0xC = Head 2, X and Y axis

Other axis combinations are specified by logical OR-

ing the bit-fields together.

averagingMode How the measured data is averaged. Multiple

samples for a given distance are taken in various

parts of the field.

Value range 0 – the table value gets the average of the samples

for a given distance

1 – the table value gets the maximum of the samples

for a given distance

2 – the table value gets the minimum of the samples

for a given distance

maxDistance Specifies the largest distance to calibrate. Values are

floating point and are converted into system “bits”
units per the Units command.

Value range 1 – (224-1) (bits) or 1 field size (user units)

smallestStep Specifies the smallest distance to calibrate. Values

are floating point and are converted into system

“bits” units per the Units command.

Session API

1040-0012 Revision 194

CalibrateJumpTime

Value range 1 – (224-1) (bits) or 1 field size (user units)

Note: smallestStep must be less than maxDistance

logData Specifies if a log file is created to hold the calibration

data. This file is created inside the SMC and can only

be accessed under the guidance of Cambridge

Technology technical support personnel. It is used

for diagnostic purposes only.

Value range TRUE or FALSE. FALSE is recommended for normal

operation.

Binary interface for JumpAndFireList data

The JumpAndFireList XML command can pass up to 65536 discrete drill points in a single instruction.

This can be a large amount of ASCII data when represented in XML format and can be inefficient to

generate with certain compilers. The API provided special binary interfaces to pass the

JumpAndFireList data without converting to XML. Each call to these methods creates a job packet

that is sent to the SMC for execution just as if it were passed as XML. Both 2-D and 3-D methods are

exposed using streaming or structured job control.

sendJumpAndFireList2D

Purpose
Sends binary 2-D JumpAddFireList streaming data to an SMC device

session

Session API

1040-0012 Revision 195

sendJumpAndFireList2D

Syntax

Uint sendJumpAndFireList2D (ushort numPoints,

float[] xCoord,

float[] yCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to

be numPoints long.

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair

(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-

bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-

bits)

3 = Interpret laserValue[n] as Digital power port value

(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

Session API

1040-0012 Revision 196

sendJumpAndFireList2D

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings

in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1

setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits

[31 – 16]

For other settings of outputMode, the value is contained in the least-

significant 16-bits of the value.

See also JumpAndFireList

sendJumpAndFireList3D

Purpose
Sends binary 3-D JumpAddFireList streaming data to an SMC device

session

Syntax

Uint sendJumpAndFireList3D (ushort numPoints,

float[] xCoord,

float[] yCoord,

float[] zCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

Session API

1040-0012 Revision 197

sendJumpAndFireList3D

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

zCoord An array of Z coordinate values for the points in the

list. The array length is expected to be numPoints

long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to

be numPoints long.

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair

(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-

bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-

bits)

3 = Interpret laserValue[n] as Digital power port value

(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings

in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1

setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits

[31 – 16]

For other settings of outputMode, the value is contained in the least-

significant 16-bits of the value.

Session API

1040-0012 Revision 198

sendJumpAndFireList3D

See also JumpAndFireList

sendJumpAndFireList3DSegment

Purpose
Sends binary 3-D JumpAddFireList as a deferred-execution named

segment to an SMC device session

Syntax

Uint sendJumpAndFireList3D (ushort numPoints,

float[] xCoord,

float[] yCoord,

float[] zCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime,

string segmentId)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints long.

zCoord An array of Z coordinate values for the points in the

list. The array length is expected to be numPoints long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to

be numPoints long.

Session API

1040-0012 Revision 199

sendJumpAndFireList3DSegment

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair

(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-

bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-

bits)

3 = Interpret laserValue[n] as Digital power port value

(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

 segmentID Specifies the name of the segment

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings

in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1

setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits [31

– 16]

For other settings of outputMode, the value is contained in the least-

significant 16-bits of the value.

The list is packaged into the named deferred execution segment and sent

to the SMC for later execution via a Sequence command.

See also JumpAndFireList, Structured Job Commands

Binary interface for JumpAndDrillList data

The JumpAndDrillList XML command can pass up to 65536 discrete drill points in a single instruction.

This can be a large amount of ASCII data when represented in XML format and can be inefficient to

generate with certain compilers. The API provide special binary interfaces to pass the

Session API

1040-0012 Revision 200

JumpAndDrillList data without converting to XML. Each call to these methods creates a job packet

that is sent to the SMC for execution just as if it were passed as XML.

sendJumpAndDrillList

Purpose Sends binary JumpAddDrillList streaming data to an SMC device session

Syntax

Uint sendJumpAndDrillList (ushort numPoints,

float[] xCoord,

float[] yCoord,

ushort laserOnTime,

ushort laserFireMode,

ushort extSyncPin,

ushort extSyncPinState)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

 laserOnTime The laser firing time in LaserTick units

Session API

1040-0012 Revision 201

sendJumpAndDrillList

laserFireMode Specifies what to do after firing the laser

0 = Fire the laser and do not wait. Immediately jump

to the next location.

1 = Fire the laser and wait until it is on. This

accommodates any LaserOnDelay that may be

specified.

2 = Fire the laser and wait until it is off. This

accomodates the LaserOnDelay, LaserOnTime, and

LaserOffDelay

3 = Fire the Laser and wait until an external signal

specified by the optional argument ExtSyncPin is

asserted to the state specified by the optional

argument ExtSyncPinState.

extSyncPin Specifies the external pin to sense. The pin identifier

is the same as the portNumber argument in the

command WaitForIO

extSyncPinState Specifies the logical state of the external pin being

sensed. The state should take into consideration

assertion inversions due to signal conditioning

circuitry.

Comments
extSyncPin and extSyncPinState are interpreted only if the laserFireMode

is set to 3. Set the values to zero if laserFireMode is 0 – 2.

See also JumpAndFireList

sendJumpAndDrillListSegment

Purpose
Sends binary JumpAddDrillList as a deferred-execution named segment to

an SMC device session

Session API

1040-0012 Revision 202

sendJumpAndDrillListSegment

Syntax

Uint sendJumpAndDrillListSegment (

ushort numPoints,

float[] xCoord,

float[] yCoord,

ushort laserOnTime,

ushort laserFireMode,

ushort extSyncPin,

ushort extSyncPinState

string segmentID)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints

long.

 laserOnTime The laser firing time in LaserTick units

laserFireMode Specifies what to do after firing the laser

0 = Fire the laser and do not wait. Immediately jump

to the next location.

1 = Fire the laser and wait until it actually is on. This

accommodates any LaserOnDelay that may be

specified.

2 = Fire the laser and wait until it is off. This

accomodates the LaserOnDelay, LaserOnTime, and

LaserOffDelay

3 = Fire the Laser and wait until an external signal

specified by the optional argument ExtSyncPin is

asserted to the state specified by the optional

argument ExtSyncPinState.

Session API

1040-0012 Revision 203

sendJumpAndDrillListSegment

extSyncPin Specifies the external pin to sense. The pin identifier

is the same as the portNumber argument in the

command WaitForIO

extSyncPinState Specifies the logical state of the external pin being

sensed. The state should take into consideration

assertion inversions due to signal conditioning

circuitry.

 segmentID Specifies the name of the segment.

Comments
extSyncPin and extSyncPinState are interpreted only if the laserFireMode is

set to 3. Set the values to zero if laserFireMode is 0 – 2.

See also JumpAndFireList

6.6 STRUCTURED JOB ORGNIZATION

Any job data defined above, from single statement to a lengthy sequence of statements, can be

passed to the SMC for immediate execution via the sendStreamData method. Data sent like this is

executed once and then discarded. If a repetitive marking pattern is desired, an application could

repeatedly send the job data with a sequence of calls to sendStreamData. Alternatively, jobs can be

structured into groups of related statements called segments and these segments can be sent to the

SMC as a named entity for deferred execution. Many segment definitions may be sent to the SMC in

this manner. A separate sequence list can then be used to dictate the execution order of the

segments, how many times to iterate each segment, and how many times to iterate the sequence as

a whole.

An entire job made up of multiple segments, and potentially multiple sequences, can be sent in a

single sendStreamData call. The same XML that makes up this job can be passed to the saveJobData

method for storage on the SMC and later accessed in stand-alone operational mode. One or more

segment definitions may be also specified and saved as a library for later reference and use within a

sequence specification. This greatly reduces the amount of data moving through the system when

commonly used graphical entities such as pre-rendered character sets are required at run-time.

Session API

1040-0012 Revision 204

6.6.1 SEGMENT CONSTRUCT

Segment

Description

Defines a job segment, which is a group of related instructions. Any job

action command or parameter statement is valid inside of a Segment.

Multiple Segments can be defined inside of a call to sendStreamData.

Note: This command is valid only in a job <Data> definition.

Syntax

<Segment id='{STR name}' iterations='{U16 iterations}' deferred='{BOOL

deferred}'>

 {any valid series of command or parameter statements}

</Segment>

Example

<Segment id='LaserCfg' iterations='1' deferred='true'>

 <set id='LaserPulse'>1; 50; 100</set>

 <LaserPower>200</LaserPower>

</Segment>

Arguments

name A name assigned to this segment

Value

range

Up to 128 alphanumeric characters

iterations The number of times this segment is to be iterated.

The default is 1 if not specified.

Value

range

1 - 65535

deferred Specifies whether the segment is executed

immediately or is saved for reference by a Sequence. If

no value is specified, the default is false (execute

immediately).

Value

range

true = Save this segment for reference by a Sequence

false = Execute this segment immediately

Session API

1040-0012 Revision 205

6.6.2 STRUCTURED JOB SEQUENCING

Sequence

Description

Defines the sequence of execution for job segments that were previously

defined with the Segment command.

Note: This command is valid only in a job <Data> definition.

Syntax

<Sequence iterations='{U16 iterations}'>

 {any valid series of sequence statements}

</Sequence>

Example

<Sequence iterations='3'>

 <RunSegment>LaserCfg</RunSegment>

 <RunSegment>Vectors; 5</RunSegment>

</Sequence>

Arguments

iterations The number of times to execute this job segment. A

value of 0 means to execute this sequence

continuously.

Value range 0 - 65535

Sequence Commands

RunSegment

Description
Causes a previously loaded and “deferred” job segment to be executed.

Note: This command is valid only inside a <Sequence> definition.

Syntax <RunSegment>{STR segmentName; U16 iteration}</RunSegment>

Example <RunSegment>Vectors; 5</RunSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

Session API

1040-0012 Revision 206

RunSegment

iteration Number of times to iterate the named job segment. If

the previously loaded job segment had an iteration

attribute specified, then the two iteration values are

multiplied, and the result is the final iteration count.

If not specified, the default is 1.

Value range 1 - 65535

DeleteSegment

Description

Causes a previously loaded and “deferred” job segment to be discarded

with all used memory returned to the main memory pool.

Note: This command is valid only inside a <Sequence> definition.

Syntax <DeleteSegment>{STR segmentName}</DeleteSegment>

Example <DeleteSegment>LaserCfg</DeleteSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

DeleteAllSegments

Description
Causes all previously loaded and “deferred” segments to be discarded

with all used memory returned to the main memory pool.

Syntax <DeleteAllSegments></DeleteAllSegments>

Example <DeleteAllSegments></DeleteAllSegments>

Arguments None

Session API

1040-0012 Revision 207

DisableSegment

Description

Causes a previously loaded and “deferred” job segment to be marked as

“disabled”, which causes it to be skipped when encountered within a

subsequent sequence list.

Note: This command is valid only inside a <Sequence> definition.

Syntax <DisableSegment>{STR segmentName}</DisableSegment>

Example <DisableSegment>LaserCfg</DisableSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

EnableSegment

Description

Causes a previously loaded and “deferred” job segment to be marked as

“enabled”, which causes it to be executed when encountered within a

subsequent sequence list.

Note: This command is valid only inside a <Sequence> definition.

Syntax <EnableSegment>{STR segmentName}</EnableSegment>

Example <EnableSegment>LaserCfg</EnableSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

UsingFile

Description

(Reserved for future use) Specifies the name of a previously saved set of

<Segment> definitions for use in a following <Sequence> definition.

Note: This command is valid only in a job <Data> definition.

Syntax <UsingFile>{STR segmentFileName}</UsingFile>

Example <UsingFile>LaserSettings</UsingFile>

Session API

1040-0012 Revision 208

UsingFile

Arguments

segmentFileName Identifier of a previously saved set of <Segment>

definitions. These definitions would have been

saved to the SMC using the API method

savejobData.

Value range Up to 128 alphanumeric characters

Note: Do not mix deferred and non-deferred segments in a single XML job packet.

6.6.3 STRUCTURED JOB EXAMPLE

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

<Data type='JobData' rev='2.0'> Define a job data packet.

 API Action: Prepare a job packet

 <Segment id='Preamble' iterations='1'

deferred='TRUE'>

Define a deferred execution

segment.

 <BeginJob></BeginJob> Assert BUSY signal and generate

an event.

 <set id='ActiveCorrectionTable'>1</set> Select the marking laser correction

table.

 <set id='EnableLaser'>TRUE</set> Enable the laser for marking.

 </Segment> Delimit the segment.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Segment id='Alignment' deferred='TRUE'> Define an immediate execution

segment.

Session API

1040-0012 Revision 209

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <set id='FieldOffset'>0.000000; 0.000000;

0.000000</set>

Introduce a field offset.

 <set id='Transform'>1.000000; 0.000000;

0.000000; 1.000000</set>

Set a Unity transform.

 </Segment> Delimit the segment.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Segment id='Params:Default' deferred='TRUE'> Define a deferred execution

segment.

 <set id='LaserPower'>50</set> Set the laser parameters.

 <set id='LaserEnableDelay'>15</set>

 <set id='LaserEnableTimeout'>15</set>

 <set id='LaserOnDelay'>0</set>

 <set id='LaserOffDelay'>50</set>

 <set id='LaserPipelineDelay'>100</set>

 <set id='LaserPulse'>1; 5; 10</set>

 <set id='MarkSpeed'>10; 10</set> Set the galvo speeds.

 <set id='JumpSpeed'>10; 10</set>

 </Segment> Delimit the segment.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Segment id='Vectors:Pentagon.plt' iterations='1'

deferred='TRUE'>

Define a deferred execution

segment.

 <set id='JumpDelay'>100</set> Set the delays. These must be kept

with the vector

definitions.

Session API

1040-0012 Revision 210

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <set id='MarkDelay'>100</set>

 <set id='PolyDelay'>50</set>

 <set id='VariPolyDelayFlag'>FALSE</set>

 <JumpAbs>-10000; 10000; 0</JumpAbs> Perform marking operations.

 <MarkAbs>0; 20000; 0</MarkAbs>

 <MarkAbs>10000; 10000; 0</MarkAbs>

 <MarkAbs>7500; -10000; 0</MarkAbs>

 <MarkAbs>-7500; -10000; 0</MarkAbs>

 <MarkAbs>-10000; 10000; 0</MarkAbs>

 </Segment> Delimit the segment.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Segment id='Postamble' iterations='1'

deferred='TRUE'>

Define a deferred execution

segment.

 <set id='EnableLaser'>FALSE</set> Enables the pointer laser.

 <set id='ActiveCorrectionTable'>2</set> Select the pointer laser correction

table.

 <EndJob></EndJob> De-assert BUSY signal and generate

an event.

 </Segment> Delimit the segment.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Sequence iterations='1'> Define a sequence to be iterated

1 time.

 <RunSegment>Preamble</RunSegment> Execute the preamble segment.

 <RunSegment>Alignment</RunSegment> Execute the alignment segment.

Session API

1040-0012 Revision 211

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <RunSegment>Params:Default</RunSegment> Execute the params segment.

 </Sequence> End the sequence

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Sequence iterations='10'> Define a sequence to be iterated

10 times.

<RunSegment>Vectors:Pentagon.plt</RunSegme

nt>

Execute the marking vectors.

 </Sequence> End the sequence.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

 <Sequence iterations='1'> Define a sequence to be iterated

1 time.

 <RunSegment>Postamble</RunSegment> Execute the postamble segment.

 </Sequence> End the sequence.

API Action: Compile and mark for

on-the-board in-memory staging;

append to output buffer.

</Data> End the job packet.

API Action: Send output buffer to

board.

Controller Actions: Deferred

segments are staged in memory on

the controller.

Each sequence is executed in order.

Session API

1040-0012 Revision 212

The job could have been organized differently; the immediate segments could have been combined

into one segment, and the same effect would have achieved. The partitioning in the above example

illustrates how a job can be organized and partitioned into related groups of job commands. This

partitioning does not add any run-time overhead.

6.7 MARKING JOB CONTROL AND ADMINISTRATION

After a session has been created, job data can be sent to an SMC using the sendStreamData

(overload 1) method or the sendStreamData (overload 2) method.

Note: Job data is created in XML format. A session is created using the loginSession method.

6.7.1 sendStreamData (overload 1)

Purpose Sends streaming data to an SMC device session

Syntax
uint

sendStreamData(

string pstrData

uint uiTimeout)

Arguments

pstrData The data sent to the SMC device. The string supplied contains

an XML representation of the data.

uiTimeo

ut

Duration for attempting call in seconds. The special case of

zero means to wait an infinite duration.

Session API

1040-0012 Revision 213

Comments

Marking jobs are specified as sequences of data that represent instructions

to the controller to:

 set operational parameters

 activate the laser steering galvos in both marking and non-marking modes

 interact with external devices

 send event information back to a listening application

Job execution by the controller starts as soon as the job data is received by

the module and continues for as long as job data is available. Very large

jobs can be partitioned into logical chunks, such as at marking object

boundaries, and streamed out to the device as buffering on the host and

target allow. Since the execution of the job—and the process of streaming

the data of the job—are asynchronous and overlapped, it is possible to

maintain continuous job execution with no pauses.

It is recommended that for very large streaming jobs, the job commands

be packetized into groups of ~1000 instructions and each packet sent with

a separate call to sendStreamData(). This minimizes the startup latency of

executing the job and maximizes the use of the network and SMC buffering

system.

See also sendStreamData2

If a syntax error is detected in the XML job data, an OnData event is generated to relate back to the

application the nature of the error. See Section Error! Reference source not found. Error! Reference so

urce not found..

6.7.2 sendStreamData (overload 2)

Purpose Sends streaming data to an SMC device session

Syntax

uint sendStreamData(string pstrData

uint uiTimeout

bool bWaitForACK

out uint executionTime)

Arguments

pstrData The data sent to the SMC device. The string

supplied contains an XML representation of the

data.

Session API

1040-0012 Revision 214

uiTimeout Duration for attempting call in seconds. The special

case of zero means to wait an infinite duration.

bWaitForACK If set to TRUE, the function does not return until a

reception acknowlegement is received from the

SMC. Otherwise, data packets are queued for

execution.

executionTime Returns an estimated execution time in milliseconds

for streaming style packets

Comments

If a syntax error is detected in the XML job data, an OnData event is

generated to relate back to the application the nature of the error.

Marking jobs are specified as sequences of data that represent

instructions to the controller to set operational parameters, to activate

the laser steering galvos in both marking and non-marking modes, to

interact with external devices, and to send event information back to a

listening application. The job data is specified in an XML string, which is

defined in the Streaming Job Data Definition section.

Job execution by the controller starts as soon as the job data is received

by the module and continues for as long as job data is available. Very

large jobs can be partitioned into logical chunks, such as at marking

object boundaries, and streamed out to the device as buffering on the

host and target allow. Since the execution of the job and the process of

streaming the data of the job are asynchronous and overlapped, it is

possible to maintain continuous job execution with no pauses.

It is recommended that for very large streaming jobs, the job commands

be packetized into groups of ~1000 instructions and each packet sent

with a separate call to sendStreamData(). This minimizes the startup

latency of executing the job and maximizes the use of the network and

SMC buffering system.

See also sendStreamData (overload 1)

If a syntax error is detected in the XML job data, an OnData event is generated to relate back to the

application the nature of the error. See Section Error! Reference source not found. Error! Reference so

urce not found..

Session API

1040-0012 Revision 215

6.7.3 sendCorrectionData (overload 1)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint

sendCorrectionData(

uint uiTableID

string pstrCorrTablePath

double dM00

double dM01

double dM10

double dM11

double dDx

double dDy

uint uiTimeout

bool bWaitForACK)

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTableP

ath

Full path to Correction table data

dM00 2x2 Matrix coefficient

dM01 2x2 Matrix coefficient

dM10 2x2 Matrix coefficient

dM11 2x2 Matrix coefficient

dDx X offset (mm)

dDy X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Session API

1040-0012 Revision 216

Comments

Normally correction tables are automatically loaded for use when the SMC

powers up. This method permits overriding the default tables with new

ones which can be altered using the transform parameters.

Both Cambridge Technology XML and Scanlab 2D CTB file formats are

supported.

Note that tables loaded using this method are not permanent and are lost

after a SMC power-cycle.

See also sendCorrectionData (overload 2), sendCorrectionData (overload 3)

6.7.4 sendCorrectionData (overload 2)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint

sendCorrectionData

(

uint uiTableID

string pstrCorrTablePath

double dScaleX

double dScaleY

double dRotation

double dDx

double dDy

uint uiTimeout

bool bWaitForACK)

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTable

Path

Full path to Correction table data

dScaleX X scale factor

dScaleY Y scale factor

dRotation Rotation in degrees (Positive is counter-clockwise)

Session API

1040-0012 Revision 217

6.7.5 sendCorrectionData (overload 3)

dDx X offset (mm)

dDy X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Comments

Normally correction tables are automatically loaded for use when the SMC

powers up. This method permits overriding the default tables with new ones

which can be altered using the adjustment parameters.

Both Cambridge Technology XML and Scanlab 2D CTB file formats are

supported.

Note that tables loaded using this method are not permanent and are lost

after a SMC power-cycle.

See also sendCorrectionData (overload 1), sendCorrectionData (overload 3)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint sendCorrectionData(uint uiTableID

string pstrCorrTablePath

double dScaleX

double dScaleY

double dRotationX

double dRotationY

double dRotationZ

double dDx

double dDy

double dDz

uint uiTimeout

bool bWaitForACK)

Session API

1040-0012 Revision 218

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTablePath Full path to Correction table data

dScaleX X scale factor

dScaleY Y scale factor

dRotationX Rotation in degrees about the X axis (Tip)

(Positive is counter-clockwise)

dRotationY Rotation in degrees about the Y axis (Tilt)

(Positive is counter-clockwise)

dRotationZ Rotation in degrees about the Z axis (Theta)

(Positive is counter-clockwise)

dDx X offset (mm)

dDy Y offset (mm)

dDz X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Comments

Normally correction tables are automatically loaded for use when the SMC

powers up. This method permits overriding the default tables with new ones

which can be altered using the adjustment parameters.

This method is designed to manipulate three-axis correction files.

Note that tables loaded using this method are not permanent and are lost

after a SMC power-cycle.

See also sendCorrectionData (overload 1), sendCorrectionData (overload 2)

Session API

1040-0012 Revision 219

6.7.6 saveJobData

Purpose
Sends job data for storage in the SMC Flash memory or on an attached

USB Flash storage drive

Syntax

uint saveJobData(int iTargetLocation

string pstrStorageName

string pstrJobData

uint puiAccessType

uint puiTimeout)

Arguments

iTargetLocation Storage location:

0 = Local disk on the PC

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrStorageName Name to use as the file name. If iTargetLocation =

0, then this is an absolute path on the local

machine.

pstrJobData XML representation of the job data

puiAccessType Access type:

0 = Overwrite

1 = Append (Reserved for future use)

puiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision 220

Comments

When a job has been constructed and tested using on-line workstation

facilities, it can be sent to the SMC for storage on resident Flash memory

or on an attached USB Flash storage drive. Jobs can also be stored on

device tmp folder, which is volatile (job file will be lost after power cycle).

Jobs stored on these devices can be run when the controller is placed in

"local" mode.

See also manageJobData, requestJobNameList, copyJobData

6.7.7 sendJobData

Purpose
Loads job data from local storage and sends it to the SMC for immediate

execution

Syntax
uint sendJobData(string pstrStorageName

uint puiTimeout)

Arguments

pstrStorageName Absolute path to the compiled job file on the local

machine

puiTimeout Duration for attempting call in seconds

Comments

Job data is loaded from a local drive and sent to the target SMC for

immediate execution.

When a job has been saved locally using the savejobData method, it can

later be sent to the SMC for immediate execution

See also manageJobData, requestJobNameList, saveJobData

Session API

1040-0012 Revision 221

6.7.8 copyJobData

Purpose
Copies job data from local storage and sends it for storage in the SMC

Flash memory or USB device

Syntax

uint copyJobData(int iTargetLocation

string pstrStorageName

uint puiTimeout)

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrStorageName Absolute path to the compiled job file on the local

machine

puiTimeout Duration for attempting call in seconds

Comments

When a job has been constructed and tested using on-line workstation

facilities and saved locally using the saveJobData method, it can be sent to

the SMC for storage on resident Flash memory or on attached USB Flash

storage drives Jobs stored on these devices can be run when the

controller is placed in "local" mode.

See also manageJobData, requestJobNameList, saveJobData

6.7.9 manageJobData

Purpose Renames or deletes jobs that have been stored on the SMC

Syntax

uint manageJobData(int iTargetLocation

string pstrCurrentStorageName

string pstrNewStorageName

uint puiActionType

uint puiTimeout)

Session API

1040-0012 Revision 222

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrCurrentStorageName Current file name

pstrNewStorageName New file name

puiActionType Action type:

0 = Delete

1 = Rename

puiTimeout Duration for attempting call in seconds

Comments
A job has been stored on the SMC can be renamed or deleted using this

command.

See also saveJobData, requestJobNameList

6.7.10 requestJobNameList

Purpose Returns a list of jobs that have been stored on the SMC Flash or USB Flash

Syntax

uint requestJobNameList(int iTargetLocation

out int piJobCount

out string pstrStorageName

uint puiTimeout)

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

piJobCount Number of jobs found on the target device

Session API

1040-0012 Revision 223

pstrStorageName File name of the data file. The file path is

constructed by the API as follows:

<PermStoragePath>\SMC\Config\<pstrStorageNa

me>.xml

where PermStoragePath is defined in the

SysInfoData for the selected SMC and

pstrStorageName is the name of the selected fixed

data file as stored on the SMC without the ".xml"

extension.

puiTimeout Duration for attempting call in seconds

Comments

Returns a list of jobs stored in the specified storage location on the SMC

An example of the syntax of the list is as follows (for the SMC Flash

device):

 <FlashJobList>

 <Job name='JobData.wlb'/>

 <Job name='LocalJob.wlb'/>

 </FlashJobList>

If the device is specified to be the USB Flash device, then <FlashJobList>

would be <USBJobList>.

See also saveJobData, manageJobData

6.8 ASYNCHRONOUS COMMUNICATION

The SMC API uses programmed events to communicate asynchronous data back to an application.

Events are divided into three types: Connect, Message and Data. Connect events are generated on

major system state changes during login and logout operations Message events are generated

during normal execution of a job. They may be programmed to occur at specific points during job

execution, or they may be generated by the system to signal an exception condition. Data events are

created in response to specific application requests for data from the system, or from errors

generated by the client API or SMC server firmware. This permits a non-blocking request/response

code structure that is more efficient for data requests that take time to resolve.

Session API

1040-0012 Revision 224

6.8.1 OnConnectEvent

Purpose Returns application and exception events from the SMC device session

Syntax
OnConnectEvent(string pstrIPAddr,

bool bState)

Arguments

pstrIPAddr The IP address of the SMC whose connected state

changed

bState True if connected; False if disconnected

Comments

The API can generate events when the API successfully "connects" to an

SMC via the loginSession method or "disconnects" using the logoutSession

method. These events are accessed via the OnConnectEvent command.

See Also loginSession, logoutSession

6.8.2 OnMessageEvent

Purpose Returns application and exception events from the SMC device session

Syntax
OnMessageEvent(uint uiPayloadHigh,

uint uiPayloadLow)

Arguments

uiPayloadHigh Event type and data; encoded in two 16-bit entities:

puiPayloadHigh[15..0] contains the event type

described in Table 24 - OnMessageEvent Message

Types

puiPayloadHigh[31..16] contains event-type specific

codes described inTable 25 - Predefined Application

Message Event

Session API

1040-0012 Revision 225

uiPayloadLow Event data

Comments

Jobs can use instructions that create "events" that can be sensed by an

application. Events are also generated when exception conditions occur

on the SMC.

Events are used to communicate asynchronous data from the controller

back to the application. Events are normally produced as a result of the

controller executing a Begin Job, End Job, or Application Event instruction.

Exception conditions may also create an event such as the response to an

Abort message, servo error detection, etc. The data that classifies the

event are passed back as two 32-bit payloads from the controller.

See Also OnDataEvent

Job messages are created using the ApplicationEvent job command. This command takes two

arguments, the first of which is a user defined type code, and the second of which is an arbitrary 32-

bit parameter. When this command is encountered by the marking engine controller, a Message

Event is created. The message type code is passed back in puiPayloadHigh[31..16], and the

parameter in puiPayloadLow[31..0]. The system pre-defines some ApplicationEvent message type

codes as indicated in Table 24 - OnMessageEvent Message Types on page 225.

Table 24 - ONMESSAGEEVENT MESSAGE TYPES

Message Type Value Description puiPayloadHig

h[31..16]

Reserved All values not otherwise

defined in this table

Reserved for future

Cambridge

Technology use

Reserved

Session API

1040-0012 Revision 226

Table 24 - ONMESSAGEEVENT MESSAGE TYPES

Message Type Value Description puiPayloadHig

h[31..16]

FixedDataProcessed 0x000F(15) Fixed data update

complete

0

JumpTimeCalDone 0x0013(19) Calibration of jump-

times complete

0

BeginJob 0x0041 (65) The BeginJob

instruction has been

executed

0

EndJob 0x0042 (66) The EndJob

instruction has been

executed

0

ApplicationEvent 0x5040 (20544) User defined

application event or

predefined system

application event (see

Table 25 - Predefined

Application Message

Event)

User or

predefined

system

specific

Application events are further refined by the uiPayloadHigh[31..16] value as defined in the following

table.

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event

Code
Description uiPayloadLow[31..0]

Reserved

application event

codes

Range 0x0000 – 0x0100 are reserved for CT

use. All other codes not mentioned here are

available to the user.

Varies

Session API

1040-0012 Revision 227

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event

Code
Description uiPayloadLow[31..0]

0x0008 (8) Digital Input Event. See SetDigitalInputConfig Digital input bit-map of

the pin that caused the

event

0x0014 (20) MOTF Trigger event Value of the trigger

counter when the pin

state change was detected

Exception event

codes

Generated by the SMC if exception conditions

are detected at run-time. Code range between

0x2328 – 0x270F (9000 – 9999) are reserved for

CT use.

Varies

0x2328 (9000) Command processing was aborted 0

0x2329 (9001) Abort message was processed 0

0x232A (9002) Command FIFO empty time-out 0

0x232C (9004) Bad opcode was received 0

0x232E (9006) WriteDigital bad argument 0

0x232F (9007) LaserPower bad argument 0

0x2330 (9008) <set id='ActiveCorrectionTable'> bad argument 0

0x2331 (9009) <set id='LaserPulse'> bad argument 0

0x2332 (9010) WaitForIO bad argument 0

0x2333 (9011) WaitForIO command time-out 0

0x2334 (9012) <set id='LaserStandby'> bad argument 0

0x2336 (9014) Time-out waiting for the laser to go active 0

0x2337 (9015) <set id='MotfDirection'> bad argument 0

0x2338 (9016) <MotfEnable> bad argument 0

Session API

1040-0012 Revision 228

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event

Code
Description uiPayloadLow[31..0]

0x2339 (9017) Performance Configuration File Pulse Width

bad argument

0

0x233A (9018) Performance Configuration File Pulse bad

argument

0

0x233B (9019) <set id='FieldOrientation'> bad argument 0

0x233D (9021) Interlock was tripped Interlock bit mask:

uiPayloadLow [3..0] =

Interlock[4..1]

0x233E (9022) WriteAnalog bad argument 0

0x233F (9023) <set id='TransformEnable'> bad argument 0

0x2342 (9026) <set id='MotfMode'> bad argument 0

0x2343 (9027) RasterMode not supported 0

0x2344 (9028) JobTimer bad argument 0

0x2346 (9030) An external Abort was processed 0

0x2393 (9107)
<set id='JumpAbsList'> bad argument

<set id='MarkAbsList'> bad argument
0

0x2394 (9108) Settle check timeout (JumpAndFireList) Status register value being

tested

0x2395 (9109) Laser On Time is zero in JumpAndFireList 0

0x2397 (9111) GSBus/XY2 Status fault detected Status register value being

tested

0x2398 (9112) L2INST GEN Memory creation failed 0

0x2399 (9113) L2INST Invalid vector args 0

0x239A (9114) L2INST Invalid Circle args 0

Session API

1040-0012 Revision 229

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event

Code
Description uiPayloadLow[31..0]

0x239C (9116) L2INST Invalid Point args 0

0x239D (9117) L2INST Invalid Spiral args 0

0x239E (9118) L2INST Servo params creation failed 0

0x239F (9119) L2INST Vect params creation failed 0

0x23A0 (9120) L2INST Circle params creation failed 0

0x23A1 (9121) L2INST Point params creation failed 0

0x23A2 (9122) L2INST Spiral params creation failed 0

0x23A3 (9123) L2INST Laser params creation failed 0

0x23A4 (9124) L2INST Output Vectors failed 0

0x23A5 (9125) L2INST Output Circles failed 0

0x23A6 (9126) L2INST Output Points failed 0

0x23A7 (9127) L2INST Output Spirals failed 0

0x23A9 (9129) Jump-time calibration was not performed 0

0x23AA (9130) Jump failed to settle in open-loop Number of points

Special Notes on Interlocks and Handling Exceptions

Exceptions generally indicate that something bad has happened and that marking operations should

be terminated as quickly as possible. This is especially important when high-power lasers are

involved. The SMC provides for fast controlled shut-down of laser operations whenever an exception

is detected by the hardware. Breaks in the interlock connectivity can be conditioned to shut down

the laser and galvo motions and generate an exception event to the host application to notify it that

the break occurred.

Session API

1040-0012 Revision 230

When a conditioned interlock trips, or any other hardware-detectable exception condition occurs,

the marking engine controller immediately stops processing the vector stream, turns off the laser,

and stops the galvo motion. It then disables the Interlock sensing function to avoid repeated

notifications and sends an exception event message to the host application. If an exception occurs,

the job cannot be restarted from where it left off.

The Interlock sensing function must be re-enabled after the fault condition is cleared. The following

figure illustrates a sample protocol for handling an interlock break.

Main Job Loop

Ensure that interlock

switches are closed

Arm interlock channel using

a priority message

Send job(s) to the SMC

<Data type=’ServiceData’
<Msg id=’SetInterlockEnable’>0x14</Msg>

</Data>

// For example, if INTLOCK3 is being used:

A

Interlock Handling

Interlock tripped:

App receives Interlock

exception message: 0x233D

(9021)

App alerts operator with

appropriate dialog box

Operator clears interlock

condition and restarts job

A

Figure 17 - INTERLOCK SEQUENCING

Session API

1040-0012 Revision 231

6.8.3 OnDataEvent

The OnDataEvent command is used to pass error details or requested data back to an application.

Priority messages that return variable data do so by generating an OnData event. In general, a

request for information is made by sending a Priority Data message (e.g., GetRegisters). When the

SMC processes the message, it sends the requested data back through the OnData event channel.

The system will also generate a Data Event if there is a Job data syntax error. In this case, the

suspected fragment of XML is returned as the event data along with an explanatory message.

OnDataEvent

Purpose Returns data requested from the SMC

Syntax

OnDataEvent(uint uiDataID,

uint uiErrorCode,

string pstrData)

Arguments

uiDataID Identifier of the data being returned. The identifiers

are as follows;

0 - Reserved

1 - Client Errors

2 - Server Errors

3 - Registers Data

4 - Reserved

uiErrorCode Error code returned from the SMC; no error == 0

pstrData The data sent by the API. This data can originate from:

• The API in the case of an XML command parsing

error

• The server in the case where a SW exception is

detected

• The SMC HW in the case where register data is

requested

The string supplied contains an XML representation of

the data.

Session API

1040-0012 Revision 232

OnDataEvent

Comments

• The system will generate a Data Event if there is a Job data syntax

error. In this case, the suspected fragment of XML is returned as

the event data along with an explanatory message.

• See Error! Reference source not found. for an example of the type of d

ata returned through this method.

See Also OnMessageEvent

6.9 PRIORITY COMMUNICATION

Occasionally it may be necessary to send urgent commands to the controller that must bypass the

data stream that is full of job data. sendPriorityData provides this mechanism. This mechanism is

used to query an SMC for on-demand status information in cases where the cycle-time of broadcast

packets is insufficient. It can also be used to pause/resume/abort a currently executing job.

6.9.1 sendPriorityData

sendPriorityData

Purpose Sends priority data to an SMC device session

Syntax
uint sendPriorityData(string pstrData

uint puiTimeout)

Arguments

pstrData The data sent to the SMC device. The string supplied

contains an XML representation of the priority request.

puiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision 233

sendPriorityData

Comments

An independent and parallel communication channel is provided to the

controller to pass "out-of-band" commands. This channel of

communication is used to send urgent commands to the controller, such as

an Abort message or pause/resume messages.

The method returns as soon as the message is sent, not when the

operation is actually performed on the target. Some messages, however,

create response events when the action is completed, such as "Abort" and

"GetRegisters".

See also getPriorityData

6.9.2 PRIORITY MESSAGES

The following table contains descriptions of priority messages that can be sent using the

sendPriorityData method.

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Abort Abort based on the reason provided. This reason causes alternative

action to be taken on the SMC device. Abort messages result in an

On Message event being generated when the operation completes

on the SMC. (Refer to Section Error! Reference source not found. (

“Error! Reference source not found.”) on page Error! Bookmark not

defined. for more information.) The reason can be either of the

following:

• Job - Abort the job that is currently running

• Terminate - Abort the currently running job and terminate the

current session connection

XML Example: <Data type='ServiceData' rev='1.1'>
 <Msg id='Abort' reason='Terminate'/>
 </Data>

Session API

1040-0012 Revision 234

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Restart Performs a hardware reset of the SMC. The session will be

disconnected and must be re-established before additional

communications is possible.

XML Example: <Data type='ServiceData'>
 <Msg id='Restart'/>
 </Data>

Suspend Suspends the execution of the job. The job is paused at the next

location where the lasers are off. If a Mark is currently in progress

(including poly-vector mark), it is allowed to complete.

XML Example: <Data type='ServiceData'>
 <Msg id='Suspend'/>
 </Data>

Resume Job execution is permitted to continue.

XML Example: <Data type='ServiceData'>
 <Msg id='Resume'/>
 </Data>

GetRegisters Sends a request to the SMC to return the current values of several

hardware registers on the module. Data is returned via a session

OnData event message. (Refer to Section Error! Reference source n

ot found. (“Error! Reference source not found.”) on page Error!

Bookmark not defined. for more information.) The register data is

parsed into named register entities if the attribute ‘raw’ is set to false

(the default). If raw is set to true, the register data is returned in an

indexed list of raw register values. See section Error! Reference s

ource not found. (“GetRegisters Priority Message OnDataEvent

Response”) on page Error! Bookmark not defined. for information

regarding the returned data.

Note: Raw lists are for advanced users only. (Please consult with

Cambridge Technology Technical Support if you want to use raw

lists.)

XML Example: <Data type='ServiceData'>
 <Msg id='GetRegisters' raw='true'/>
 </Data>

Session API

1040-0012 Revision 235

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetInterlockEnable (Reserved for future use) Enables or disables the interlock function of

the SMC based on the "config" bit pattern.

• Bits[3..0] represent the interlock signals INTLOCK[4..1].

• A "1" enables a transition of the interlock signal going from the

unasserted to the asserted state to generate an "Interlock"

exception and shut down an active job provided that bit 4 is

also asserted.

• Bit[4] is the master enable bit for the interlock function. If this

bit is set, then all enabled interlock signals should be de-

asserted at power-up time or else an immediate "Interlock"

exception will be generated when this parameter is

processed.

If an interlock that is enabled is tripped, the condition that caused

the trip must be cleared before a job can be restarted without

generating another "Interlock" exception.

The current state of the interlock physical signals can be seen in the

Broadcast Status data as element Interlock.

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetInterlockEnable' config='0x14'/>
 </Data>
 or
 <Data type='ServiceData'>
 <Msg id='SetInterlockEnable'>0x14</Msg>
 </Data>

Session API

1040-0012 Revision 236

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetInterlockPolarity (Reserved for future use) Sets the polarity of the interlock signals of

the SMC based on the "config" bit pattern.

Bits[3..0] represent the interlock signals INTLOCK[4..1]. A "1"

corresponds to no current flowing through the interlock optical

isolator. This condition is the interlock open state.

XML Example: <Data type='ServiceData'>
 <Msg id='SetInterlockPolarity' config='0x4'/>
 </Data>
 or
 <Data type='ServiceData'>
 <Msg id='SetInterlockPolarity'>0x4</Msg>
 </Data>

SetOffset (Obsolete) Sets the run-time X, Y, and Z offsets to be applied to the

vectors if the TransformEnable job command had been set to the

enabled state.

Otherwise, this message has no effect. The Z offset is optional and if

not present it is not changed. Units are defined by the <set

id='Units'> command

XML Example: <Data type='ServiceData'>
 <Msg id='SetOffset'>200; 300; 100</Msg>
 </Data>

StopCurrentSequence (Reserved for future use) Stops a continuously executing sequence at

the end of its current iteration. Other sequences that are queued are

run in order.

XML Example: <Data type='ServiceData'>
 <Msg id='StopCurrentSequence'></Msg>
 </Data>

StopAllSequences (Reserved for future use) Stops a continuously executing sequence at

the end of its current iteration. Any other sequences that are queued

are not run.

XML Example: <Data type='ServiceData'>
 <Msg id='StopAllSequences'></Msg>
 </Data>

Session API

1040-0012 Revision 237

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Flush (Reserved for future use) Flushes all queued job data. Data that has

reached the SMC marking engine is allowed to complete execution.

XML Example: <Data type='ServiceData'>
 <Msg id='Flush'></Msg>
 </Data>

SetRTJobTransform2D Sets the run-time coordinate transform {Angle, Xoff, Yoff} to be

applied to the vectors if the TransformEnable job command has been

set to the id value. If the TransformEnable job command has not

been set to the id value, this message has no effect. The arguments

are the following:

id - 1 or 2 to select between two separate transform

data sets

Angle - Angle in degrees to rotate

Xoff,Yoff - X and Y offset values to apply in user units

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetRTJobTransform2D'>1; 25.0; 0.0;
 </Data>

Session API

1040-0012 Revision 238

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetRTjobTransformMatrix Sets the run-time coordinate transform matrix {M00, M01, M10,

M11, Xoff, Yoff} to be applied to the vectors if the TransformEnable

job command had been set to the id value. If the TransformEnable

job command has not been set to the id value, this message has no

effect. The arguments are the following:

id - 1 or 2 to select between two separate transform

data sets

M00 -

M11

- 2x2 transform matrix elements

Xoff,Yoff - X and Y offset values to apply in user units. Offsets

are applied

 after the matrix multiply operation.

XML Example: <Data type='ServiceData'>
 <Msg id='SetRTJobTransformMatrix'>
 1; 0.707; -0.707; 0.707; 0.707; 5.0; 25.0
 </Msg>
 </Data>

ExecuteJob (Reserved for future use) Initiates the execution of a job previously

stored on the SMC. The arguments are the following:

location - 0 (local Flash), 1 (USB flash)

mode - 0 (execute once), 1 ((execute continuous)

name - File name of job stored on the SMC

XML Example: <Data type='ServiceData'>
 <Msg id='ExecuteJob' location='0'
 mode='1' name='square.job'></Msg>
 </Data>

Session API

1040-0012 Revision 239

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetDigitalInputConfig Sets the event-generating configuration of the digital inputs. The

three arguments are encoded as follows:

• arg1 - Bit-mask that enables a particular input to generate an

event on a state change

• arg2 and arg 3 - Polarity mask pair where the corresponding bit

positions encode the event-generating behavior of the

corresponding input as follows:

arg2-bit arg3-bit

0 0 Notify if transitioning to a low state

1 0 Notify if transitioning to a high

state

X 1 Notify if transitioning to either

state

The bit mappings to signals are as follows:

bits[3..0] = AUX_GPI[4..1]_ISO

bits[5..4] = AUX_START_ISO, START

bits[9..6] = INTERLOCK[4..1]

(LASER_STAT2, LASER_STAT1, LASER_STAT0,

ABORT)

bits[31..16] = EXTAUXIN[15..0]

A transition from one to zero corresponds to a state of no current

flowing through the isolator to a state of current flowing through the

isolator.

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetDigitalInputConfig'>0x0; 0x1;
 </Data>

Session API

1040-0012 Revision 240

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

GetCalFactors Retrieves the current calibration factors used by the SMC. See

section Error! Reference source not found., “Error! Reference source no

t found.” for details on the information returned.Error! Reference

source not found.

XML Example: <Data type='ServiceData'>
 <Msg id='GetCalFactors'/>
 </Data>

SetCalFactors Set new calibration factors for use by the SMC. These override the X,

Y, and Z calibration factors currently in use for active correction

tables 1 & 2, respectively. These values are used to convert SMD,

SMAPI, and ScanScript job coordinates to bits units used by the

hardware. These values also update the API for when the Units

command is not set to Bits units.

XML Example: <Data type='ServiceData'>

 <Msg id='SetCalFactors'>

 <XKFactor1>533.2332</XKFactor1>

 <YKFactor1>533.2332</YKFactor1>

 <ZKFactor1>650.1334</ZKFactor1>

 <XKFactor2>450.8765</XKFactor2>

 <YKFactor2>450.8765</YKFactor2>

 <ZKFactor2>520.4524</ZKFactor2>

 <XKFactor3>533.2332</XKFactor3>

 <YKFactor3>533.2332</YKFactor3>

 <ZKFactor3>650.1334</ZKFactor3>

 <XKFactor4>450.8765</XKFactor4>

 <YKFactor4>450.8765</YKFactor4>

 </Data>

Session API

1040-0012 Revision 241

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SyncFileSystem Writes any file data buffered in memory on the SMC out to disk. After

sending files to SMC using FTP or after other local (to the SMC) file

operations, the content of the file may still be cached in memory and

not actually be writen to disk. If the power to the SMC is removed,

the file content may be lost.

XML Example: <Data type='ServiceData'>

 <Msg id='SyncFileSystem'/>

 </Data>

StartLogging Send raw commands received by SMC marking engine to host

computer for logging purpose. The host computer is identified by

{hostIPAddress, port}.

 hostIPAddress : Host computer IPv4 address

 port: End port number

XML Example: <Data type='ServiceData'>

 <Msg id='StartLogging' Port='5032'

 HostIPAddress='192.168.100.1'/>

 </Data>

StopLogging Stop sending raw commands received by SMC marking engine to host

computer. It is paired with StartLogging priority message.

XML Example: <Data type='ServiceData'>

 <Msg id='StopLogging'/>

 </Data>

PowerScale Adjusts the laser power level by the value in the message. The laser

power of an operating job will be immediately scaled by the factor

upon receipt of the message.

XML Example: <Data type='ServiceData'>

 <Msg id='PowerScale'>0.9</Msg>

 </Data>

Session API

1040-0012 Revision 242

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

WriteDigital Writes the specified digital output port with the specified value. Port

numbering and value descriptions are the same as for the job

command <WriteDigital>.

XML Example: <Data type='ServiceData'>

 <Msg id='WriteDigital'>0, 1</Msg>

 </Data>

6.9.3 getPriorityData

Some priority messages are designed to fetch information from the SMC on demand. Such

information is returned to the application asynchronously through the use of Data Events (see

Section Error! Reference source not found. (“Error! Reference source not found.”) on page Error!

Bookmark not defined.). This asynchronous request/response scenario is not always convenient for

an application, in which case the getPriorityData method can be used. The getPriorityData method

directly returns the XML string representing the requested data without the application arming for a

Data Event. The calling thread is blocked until the response packet has arrived from the board.

getPriorityData

Purpose
Sends a priority data message to an SMC device session and waits for a

response

Syntax

uint getPriorityData(string pstrData

out string pstrRegData

uint puiTimeout)

Arguments

pstrData A properly formed priority data request

pstrRegData The XML data returned by the SMC device

puiTimeout Duration for attempting call in seconds. Minimum 1

second.

Session API

1040-0012 Revision 243

getPriorityData

Comments

The message is sent and the requested data is returned to the application.

This method blocks the calling thread until the data is returned or a

timeout occurs.

See Error! Reference source not found. for an example of the type of data r

eturned through this method.

See also sendPriorityData

6.9.4 GetRegisters Priority Message OnDataEvent Response

Data is returned asynchronous from the request.

Register Data is returned as follows:

<Data type='HardwareState' rev='2.0'>

 <FpgaConfig>0xD</FpgaConfig> // Advanced use only. Contact

Cambridge Technology Technical

Support.

 <AuxIO_ID>0x0</AuxIO_ID> // 0 == AuxDIO module not in use. 1 ==

module present.

 <MOTFFrequency>0</MOTFFrequency> // MOTF 0 speed (counts/10ms)

// Deprecated. Use MOTF0Position

 <MOTF0Frequency>0</MOTF0Frequency> // MOTF 0 speed (counts/10ms)

 <MOTF1Frequency>0</MOTF1Frequency> // MOTF 1 speed (counts/10ms)

 <ServoStatus>0x0</ServoStatus> // Bits 6..3 == Z, Y, X Fault. Bits 2..0 ==

Z, Y, X Ready.

 <XDAC>-500</XDAC>

 <YDAC>-500</YDAC>

 <ZDAC>0</ZDAC>

 <A1DAC>16</A1DAC>

 <A2DAC>0</A2DAC>

Session API

1040-0012 Revision 244

 <XY2Chan1>-500</XY2Chan1>

 <XY2Chan2>-500</XY2Chan2>

 <XY2Chan3>0</XY2Chan3>

 <XY2Status>0x0</XY2Status>

 <LaserTiming>50</LaserTiming>

 <LaserPower>0</LaserPower>

 <MOTFPosition>0</MOTFPosition> // current MOTF 0 scaled count value

// Deprecated. Use MOTF0Position

 <MOTF0Position>0</MOTF0Position> // current MOTF 0 scaled count value.

If the MotfCalFactor is set to 1.0, this

value is the actual encoder count for

MOTF Port 0

 <MOTF1Position>0</MOTF1Position> // current MOTF 1 scaled count value.

If the MotfCalFactor is set to 1.0, this

value is the actual encoder count for

MOTF Port 1

 <DIO>0x3FF</DIO> // bits[3..0] == AUX_GPI[4..1]_ISO

bit[5..4] == AUX_START_ISO, START

bits[9..6] == INTERLOCK[4..1]

bits[13..10] == AUX_GPI4..1]_ISO

bits[17..14] == JOBACTIVE,

ERROR/NREADY, BUSY, LASING

 <DIO.IN>0xF</DIO.IN> // bits[3..0] == AUX_GPI[4..1]_ISO

 <DIO.OUT>0x0</DIO.OUT> // bits[3..0] == AUX_GPO[4..1]

 <DIO.Control>0x1</DIO.Control> // bits[4..0] == JOBACTIVE,

ERROR/NREADY, BUSY, LASING, START

 <DIO.Interlock>0xF</DIO.Interlock> // bits[3..0] == INTLOCK[4..1]

 <JobTimer>0</JobTimer>

 <XVectCmd>-500</XVectCmd>

 <YVectCmd>-500</YVectCmd>

 <ZVectCmd>0</ZVectCmd>

 <AuxIO_Ana1>0x20</AuxIO_Ana1> // Optional auxiliary I/O module with

analog sub-option

Session API

1040-0012 Revision 245

 <AuxIO_Ana2>0x0</AuxIO_Ana2> // Optional auxiliary I/O module with

analog sub-option

 <AuxIO_DIn>0x8FFC</AuxIO_DIn> // Optional auxiliary I/O module

 <AuxIO_DOut>0x0200</AuxIO_DOut> // Optional auxiliary I/O module

</Data>

6.9.5 GetCalFactors Priority Message OnDataEvent Response

Data is returned asynchronous from the

request.

CalFactor Data is returned as follows:

<Data type=CalFactors rev='1.0'>

 <XKFactor1>300.8149</XKFactor1>

 <YKFactor1>300.8149</YKFactor1>

 <ZKFactor1>231.518</ZKFactor1>

 <XKFactor2>300.8149</XKFactor2>

 <YKFactor2>300.8149</YKFactor2>

 <ZKFactor2>231.518</ZKFactor2>

 <XKFactor3>300.8149</XKFactor3>

 <YKFactor3>300.8149</YKFactor3>

 <ZKFactor3>231.518</ZKFactor3>

 <XKFactor4>300.8149</XKFactor4>

 <YKFactor4>300.8149</YKFactor4>

 <ZKFactor4>231.518</ZKFactor4>

These are the X, Y, and Z calibration factors

currently in use for active correction tables 1 - 4,

respectively. These values are used to convert

SMD, SMAPI, and ScanScript job coordinates to

bits units used by the hardware. These are also

automatically read at session login time to

initialize the API for when the Units command is

not set to Bits units

</Data>

6.10 API ERROR CODES

Errors returned by the Session API are defined in the following table. The error descriptions can be

accessed through the use of the method GetErrorCodeDescription.

Session API

1040-0012 Revision 246

GetErrorCodeDescription

Purpose Returns a string describing the meaning of the error code.

Syntax GetErrorCodeDescription (uint uiErrorCode)

Arguments uiErrorCode The error code returned by one of the API methods

Comments

Broadcast and Session methods return a code denoting the success (return

value = 0), or failure of the method (return value != 0). A string describing

the code can be fetched using this function.

See Also

Remote Control API

1040-0012 Revision 247

7 REMOTE CONTROL API

There are three basic modes of operation for the SMC:

1. LAN-based streaming mode, where job data is managed on a host computer and sent to the

SMC for immediate execution

2. Local mode, where an attached pendant is used to control the selection and execution of

locally stored jobs

3. Remote mode, where a LAN-based supervisory interface can interact with the SMC and

control all of the local mode functions

Remote mode is implemented as a text-based messaging interface over a normal TCP/IP socket

connection. Messages are sent to the SMC as strings terminated with a line-feed character. All

messages sent to the SMC are acknowledged with a line-feed terminated string.

All read or Get functions can be executed concurrently with other activities that the board may be

performing, such as running jobs over the streaming interface. These functions would typically be

associated with administrative functions such as examining passwords, networking parameters, job

lists, etc. If modifications need to be made, or if actual execution control is required via the remote

control interface, then a client application must "request control" or ownership of the module via the

Remote Control API protocol command TakeHostControl.

7.1 TCP/IP INTERFACE

Remote control of the SMC can be established by any host computer that supports TCP/IP

networking. This includes computers running Microsoft Windows, Linux, or other Unix derivatives.

Communication with the board is established by opening a socket connection using the SMC IP

address on port number 12500. The IP address can be learned by using the BroadcastAPIMethods to

access the SysInfo data packets that are broadcast by the SMC. Alternatively, if the SMC is configured

with a static IP address, broadcast monitoring is not required.

When a connection is established, the SMC transmits a "Welcome banner". This string must be read

from the socket before bi-directional communication can be established.

Remote Control API

1040-0012 Revision 248

7.2 RS232 INTERFACE

Remote control of the SMC can also be established by any host computer that supports RS232 serial

communications. Communication is established by opening a COM port connection on the local

computer that is connected to the SMC. The SMC COM port that is used for the protocol is

controlled by settings in the Administration Configuration file. See the description of APIPort in Table

10 - Administration Configuration on page 45 for additional details.

If a single new-line character is sent to the remote control port, the SMC transmits a "Welcome

banner". This string can be used to verify that communication has been established.

7.3 PROTOCOL SPECIFICATION

The following tables define the valid remote control commands and responses. Some commands

take arguments. In such cases, the arguments are separated from the command and from each other

by a "," (comma) character. If commands yield responses that have multiple values, the values are

comma separated.

Note that all commands can be either text strings or numeric identifiers and are expressed in the

table enclosed in quotes (" "). The quotation characters are NOT part of the command. This is also

true for responses. Variable information is expressed as <variable> which is also a string.

There are two command modes can be used: basic mode and enhanced mode. All the commands

listed in section 6.3.1 are expressed in basic mode.

The basic mode: the command string is sent to the SMC, and SMC sends back a response string. This

mode poses a command-response synchronization problem when commands are send quickly. For

example, the source sends command 1 to the SMC, and waits for response 1. If the SMC takes longer

to respond, then the source may timeout and get no response. Next, the source may clear the

receive buffer, send command 2 to SMC and waits for response 2. If at this time SMC completes

command 1 and sends back response 1, then source will wrongly assume response 1 as response 2.

The enhanced mode: each command string is prefixed with a ‘$’ character, followed by a
UniqueNumber chosen by the API user, followed by a ‘:’ character. The SMC will use the same
“$UniqueNumber:” prefix with the response. For asynchronous event messages, the message is

prefixed with “#EventUniqueNumber:” set of characters. EventUniqueNumber is generated

Remote Control API

1040-0012 Revision 249

automatically by the SMC. If an event message has multiple lines, each line will have the same prefix.

The enhanced command mode is the preferred mode. Below is a short example:

Command string Response string Note

$1008:GetHostControlStatus $1008:5 Host not in control

$1009:TakeHostControl $1009:0 Command success

… …

 #1002:65 Event BeginJob

 #1003:66 Event EndJob

Note also that all commands and arguments are case-sensitive.

RemoteAdminstrator.exe is a sample program that uses the Remote API to access the SMC. It is

located in C:\Program Files\Cambridge Technology\Client.

7.3.1 CONTROL AND COMMUNICATIONS COMMANDS

Abort (1) Command

Purpose Stops the execution of a job

Implementation "Abort" or "1"

Parameters None

Returns "0" – Command acknowledge

Comments
Immediately stops the execution of a running job and sets the JobRunning

status to "Idle"

See also N/A

TakeHostControl (2) Command

Purpose Requests exclusive control of the SMC

Remote Control API

1040-0012 Revision 250

TakeHostControl (2) Command

Implementation "TakeHostControl" or "2"

Parameters None

Returns "0" – Command acknowledge

Comments

This command will cause an abort of any actively running job. Use the

GetJobStatus command to verify that the SMC job status is "Idle" before

issuing this command.

See also ReleaseHostControl, GetJobStatus

ReleaseHostControl (3) Command

Purpose Releases exclusive control of the SMC to the LANStream host interface

Implementation "ReleaseHostControl" or "3"

Parameters None

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• After this command is executed, jobs may be streamed to the SMC via

the LANStream host interface.

See also TakeHostControl

GetHostControlStatus (4) Command

Purpose Returns the current SMC control status of this remote control session

Implementation "GetHostControlStatus" or "4"

Parameters None

Remote Control API

1040-0012 Revision 251

GetHostControlStatus (4) Command

Returns

"125" – HOST_IN_CONTROL (control has been granted to this session)

"126" – HOST_NOT_IN_CONTROL (this session is not in exclusive control of

the SMC)

See also TakeHostControl, ReleaseHostControl

GetHostInControl (5) Command

Purpose Returns the current host interface that has exclusive control of the SMC

Implementation "GetHostInControl" or "5"

Parameters None

Returns

"Pendant" – Control has been granted to the pendant interface.

 "LANStream" – Control has been granted to the streaming LAN interface.

 "LAN" – Control has been granted to the LAN remote control interface.

See also TakeHostControl, ReleaseHostControl

EnableBroadcasting (6) Command

Purpose (Obsolete) Enables or disables the broadcast function of the SMC

Implementation "EnableBroadcasting <enable-state>" or "6, <enable-state>"

Parameters

<enable-state> Specifies whether the broadcast function of the SMC is

enabled or disabled

Value range 0 = Disabled

1 = Enabled

Returns "0" – Command acknowledge

Remote Control API

1040-0012 Revision 252

EnableBroadcasting (6) Command

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

See also TakeHostControl

LoadHardwareDefaults (7) Command

Purpose Sets the current operating parameters of the SMC to their default values

Implementation "LoadHardwareDefaults" or "7"

Parameters None

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

See also TakeHostControl

HardwareReset (8) Command

Purpose Forces a hardware reset of the SMC

Implementation "HardwareReset" or "8"

Parameters None

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• The board will reboot as if power were just applied. Any IP

addressing changes will be applied.

Remote Control API

1040-0012 Revision 253

HardwareReset (8) Command

See also TakeHostControl

GetRemoteIP (9) Command

Purpose Returns the IP address of the LAN stream host that has control of the SMC

Implementation "GetRemoteIP" or "9"

Parameters None

Returns Remote IP address in dot notation (e.g., 192.168.101.2)

Comments If no host has control, the address "0.0.0.0" is returned.

See also N/A

GetKFactor (10) Command

Purpose

Returns the calibration factor for the X-axis (in bits/mm) as stored in the

correction table file assigned to CorrFile1 as defined in the Control

Configuration file.

Note: Unless a different Y-axis calibration factor is specified in the

correction table file, the value returned by this command is also the Y-axis

calibration factor.

Implementation "GetKFactor" or "10"

Parameters None

Returns KFactor in floating-point notation

See also GetYKFactor, GetZKFactor

Remote Control API

1040-0012 Revision 254

SetPerformanceGlobals (14) Command

Purpose Sets factors to alter the run-time performance of the system.

Implementation

"SetPerformanceGlobals <mark-speed-adjust>,<laser-power-adjust>,

<pulse-width-adjust>,<pulse-period-

adjust>,<orientation>,

<X-offset>,<Y-offset>,<Z-offset>"

 or

"1

4

<mark-speed-adjust>,<laser-power-adjust>,<pulse-width-adjust>,

<pulse-period-adjust>,<orientation>,<X- offset>,<Y-offset>,<Z-offset>"

Parameters

<mark-speed-adjust> – Multiplier for MarkSpeed 0.5 - 1.5;

 specify "NOP" if no change is desired.

<laser-power-adjust> – Multiplier for LaserPower 0.8 - 1.2;

 specify "NOP" if no change is desired.

<pulse-width-adjust> – Multiplier for laser ON pulse width 0.5 - 1.5;

 specify "NOP" if no change is desired.

<pulse-period-

adjust>

– Multiplier for laser on pulse period 0.5 - 1.5;

 specify "NOP" if no change is desired.

<orientation> – Field orientation in degrees 0, 90, 180, 270;

 specify "NOP" if no change is desired.

<X-offset> – X-axis offset in bits -8388608 – 8388607;

 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

<Y-offset> – Y-axis offset in bits -8388608 – 8388607;

 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

Remote Control API

1040-0012 Revision 255

SetPerformanceGlobals (14) Command

<Z-offset> – Z-axis offset in bits -8388608 - 8388607;

 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

Returns "0" – Command acknowledge

Comments

These factors alter the specified marking properties without the need for

changing the job. These values are volatile and will not be valid if the SMC

is reset.

See also ResetPerformanceGlobals

ResetPerformanceGlobals (15) Command

Purpose
Resets the run-time performance modification parameters to their unity

values.

Implementation "ResetPerformanceGlobals,<persist-to-file>" or "15,<persist-to-file>"

Parameters

<persist-to-file> Specifies whether to write reset values to the

Performance Globals configuration file.

Value range 0 = Do not write reset values to the Performance Globals configuration

file.

1 = Write reset values to the Performance Globals configuration file.

Returns "0" – Command acknowledge

Comments
The unity values result in no run-time modification to job-specified

marking parameters.

See also SetPerformanceGlobals

Remote Control API

1040-0012 Revision 256

OpenCOMPort (16) Command

Purpose Opens the specified serial I/O COM port on the SMC

Implementation

"OpenCOMPort,<port-ID>,<baud-rate>,<data-bits>,<parity>,<stop-

bits>,<flow-control>"

 or

"16,<port-ID>,<baud-rate>,<data-bits>,<parity>,<stop-bits>,<flow-

control>"

Parameters

<port-ID> The serial I/O COM port to be opened

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

<baud-rate> The baud rate for the serial I/O COM port specified in

<port-ID>

Value range 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600,

115200, 128000, or 256000

<data-bits> The data bits for the serial I/O COM port specified in <port-

ID>

Value range 5, 6, 7, or 8

<parity> The parity for the serial I/O COM port specified in <port-

ID>

Value range Even, Odd, None, Mark, or Space

<stop-bits> The stop bits for the serial I/O COM port specified in <port-

ID>

Value range 1, 1.5, or 2

<flow-control> The flow control for the serial I/O COM port specified in

<port-ID>

Remote Control API

1040-0012 Revision 257

OpenCOMPort (16) Command

Value range None, XonXoff, CTS_RTS, or DSR_DTR

Returns "0" – Command acknowledge

Comments

• This command is available only if the system is configured for

accepting streaming job data over Ethernet. The specified COM

port is opened and is available for serial I/O.

• This operation is intended to permit out-of-band communication to

serial-port-based automation devices or laser systems.

• A normal configuration might be specified as

OpenCOMPort,2,38400,8,None,1,None

• Only COM port-ID 1 has hardware flow control support.

See also COMWriteLine, CloseCOMPort

CloseCOMPort (17) Command

Purpose Closes a serial I/O COM port on the SMC

Implementation "CloseCOMPort,<port-ID>" or "17,<port-ID>"

Parameters

<port-ID> The serial I/O COM port to be closed

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

Returns "0" – Command acknowledge

Comments The COM port is closed and no longer available for serial I/O

See also COMWriteLine, OpenCOMPort

Remote Control API

1040-0012 Revision 258

COMWriteLine (18) Command

Purpose Writes the string argument to the COM port on the SMC.

Implementation
"COMWriteLine,<port-ID>,<string>,<Timeout>" or "18,<port-

ID>,<string>,<Timeout>"

Parameters

<port-ID> The serial I/O COM port to be written to

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

<string> The string to be written to the COM port

Value range Any ASCII character string

<Timeout> Time to wait (in seconds) for a new-line terminated

response

Value range 0 - 65665

Returns

"<response string>" – Command acknowledge

"ERROR_PORT_TIMEOUT" – The return string was not received before

timeout expiration.

Comments

This operation is intended to permit out-of-band communication to serial-

port-based automation devices or laser systems. The specified port-ID must

have been opened with the command OpenCOMPort.

See also CloseCOMPort, OpenCOMPort

SetMotfEncoderRate (21) Command

Purpose
Sets the calibration factor used to convert encoder counts to laser galvo

command bits (i.e., bits/encoder-count).

Remote Control API

1040-0012 Revision 259

SetMotfEncoderRate (21) Command

Implementation "SetMotfEncoderRate,<rate>"

Parameters

<rate> Bits per encoder-count

Value range -32768.0 to 32767.0

Returns "0" – Command acknowledge

Comments

The encoder rate relates encoder counts to how far an object travels in the

lens field in galvo command bits. In the XML API, this is referred to as

MotfCalFactor

See also N/A

GetZKFactor (27) Command

Purpose

Returns the calibration factor for the Z-axis (in bits/mm) as stored in the

correction table file assigned to CorrFile1 as defined in the Control

Configuration file.

Implementation "GetZKFactor" or "27"

Parameters None

Returns ZKFactor in floating-point notation

See also GetYKFactor, GetKFactor

GetYKFactor (28) Command

Purpose

Returns the calibration factor for the Y-axis (in bits/mm) as stored in the

correction table file assigned to CorrFile1 as defined in the Control

Configuration file.

Implementation "GetYKFactor" or "28"

Parameters None

Remote Control API

1040-0012 Revision 260

GetYKFactor (28) Command

Returns YKFactor in floating-point notation

See also GetKFactor, GetZKFactor

GetControllerTemp (29) Command

Purpose Returns the temperature of the SMC board.

Implementation "GetControllerTemp" or "29"

Parameters None

Returns The board temperature in degrees C.

See also

COMReadLine (30) Command

Purpose Reads a string from a COM port on the SMC.

Implementation "COMReadLine,<port-ID>,<Timeout>" or "30,<port-ID>,<Timeout>"

Parameters

port-ID Numeric port identifier

Value range 2 == COM2

3 == COM3

 Timeout How long to wait for a line terminator

 Value range 0 - 100

Returns "<Response string>"

Remote Control API

1040-0012 Revision 261

COMReadLine (30) Command

Comments

This operation is intended to permit out-of-band communication to serial

port based automation devices or laser systems. The specified port-ID must

have been opened with the command OpenCOMPort. Lines are expected

to be terminated with the new-line character.

See also CloseCOMPort, OpenCOMPort

GetDigitalPort (35) Command

Purpose Returns the state of the specified digital port

Implementation "GetDigitalPort, <PortID>" or "35, <PortID>”

Parameters

port-ID Numeric port identifier

Value range 0 == Current Digital I/O port

1 == Auxiliary I/O port

Returns <PortValue> (in hexadecimal notation, e.g. 0x1000233F)

Comments

Current digital I/O port bits are decoded as described in section Error! R

eference source not found. “Error! Reference source not found.”, packet

tag CurrentDIO. Auxiliary I/O bits are concatenated as

0x<AUX_GPO[15..0]><AUX_GPI[15..0]>

See also

GetCalScaleFactors (39) Command

Purpose
(Reserved for future use) Returns the current scale factors used to adjust

the Cal Factor values that affect the job geometry size

Implementation "GetScaleFactors" or "39"

Parameters N/A

Returns “<XScale>, <YScale>, <ZScale>” (in floating-point notation)

Remote Control API

1040-0012 Revision 262

GetCalScaleFactors (39) Command

Comments

These factors are used to alter the values of KFactor, YKFactor, and

ZKFactor when ScanMaster Designer, ScanMaster API, or ScanSript based

jobs are run.

See also SetScaleFactors

SetCalScaleFactors (40) Command

Purpose
(Reserved for future use) Sets the scale factors used to adjust the Cal Factor

values that affect the job geometry size

Implementation
"SetScaleFactors, <XScale>, <YScale>, <ZScale> " or

"40, <XScale>, <YScale>, <ZScale>” (in floating-point notation)

Parameters

XScale Multiplier for KFactor

Value range 0.0 – 10.0

YScale Multiplier for YKFactor

Value range 0.0 – 10.0

ZScale Multiplier for ZKFactor

Value range 0.0 – 10.0

Returns "0" – Command acknowledge

Comments

These factors are used to alter the values of KFactor, YKFactor, and

ZKFactor when ScanMaster Designer, ScanMaster API, or ScanSript based

jobs are run.

See also GetScaleFactors

Remote Control API

1040-0012 Revision 263

7.3.2 JOB EXECUTION CONTROL

ClearJobList (200) Command

Purpose Clears the list of loaded jobs.

Implementation "ClearJobList" or "200"

Parameters None

Returns "0" – Command acknowledge

Comments Before jobs can be executed locally, they must be loaded from Flash

memory into the SMC working memory. To change the list of loaded jobs,

the list must be cleared first using this command.

Jobs are loaded into the SMC Flash file system through the use of the

saveJobData method.

See also saveJobData

GetFlashJobFileList (203) Command

Purpose Returns a comma-separated list of job files located on the SMC Flash drive.

Implementation "GetFlashJobFileList" or "203"

Parameters None

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded into the SMC Flash file system through the use of the

saveJobData method.

See also saveJobData, and LoadFlashJob

GetUSBJobFileList (204) Command

(Not yet supported)

Purpose Returns a comma separated list of job files located on the USB Flash drive

on the SMC.

Implementation "GetUSBJobFileList" or "204"

Remote Control API

1040-0012 Revision 264

GetUSBJobFileList (204) Command

(Not yet supported)

Parameters None

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded onto a USB Flash file system through the use of the

saveJobData method.

See also saveJobData

LoadFlashJob (205) Command

Purpose Loads a job from the SMC Flash drive.

Implementation "LoadFlashJob,<job-name>" or "205,<job-name>"

Parameters <job-name> – The name of a job stored on the SMC

Returns "0" – Command acknowledge

Comments • Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• The job name must include the extension as part of the name (e.g.

"Circle.wlb").

See also GetFlashJobFileList

LoadUSBJob (206) Command

(Not yet supported)

Purpose Loads a job from the USB Flash drive on the SMC.

Implementation "LoadUSBJob,<job-name>" or "206,<job-name>"

Parameters <job-name> – The name of a job stored on the USB Flash file system

device

Returns "0" – Command acknowledge

Remote Control API

1040-0012 Revision 265

LoadUSBJob (206) Command

(Not yet supported)

Comments • The host must have exclusive control of the SMC (TakeHostControl)

before issuing this command.

• The job name must include the extension as part of the name (e.g.

"Circle.wlb").

See also GetUSBJobFileList

ExecuteJobOnce (207) Command

(Partially supported)

Purpose Starts the one-time execution of a job.

Implementation "ExecuteJobOnce, <job-name>" or "207, <job-name>"

Parameters <job-name> – One of the jobs loaded with LoadFlashJob or LoadUSBJob.

Note: Job-name is not currently supported. All of the loaded jobs are

executed in the order they were loaded regardless if job-name is present

or empty.

Returns "0" – Command acknowledge

Comments • Before this command is executed, the host must have done the

following:

o Taken control of the SMC using the TakeHostControl

command

o Loaded a locally stored job with the LoadFlashJob

command or the LoadUSBJob command

• Unless the job was constructed with a WaitForIO instruction, it will

begin to execute immediately.

• The job can be stopped at any time by issuing an Abort command.

• This command returns as soon as the job is dispatched.

See also TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

ExecuteJobContinuous (208) Command

(Partially supported)

Purpose Starts the execution of a job and repeats it forever.

Remote Control API

1040-0012 Revision 266

ExecuteJobContinuous (208) Command

(Partially supported)

Implementation "ExecuteJobContinuous, <job-name>" or "208, <job-name>"

Parameters <job-name> – One of the jobs loaded with LoadFlashJob or LoadUSBJob

Note: Job-name is not currently supported. All of the loaded jobs are

executed in the order they were loaded regardless if job-name is present

or empty.

Returns "0" – Command acknowledge

Comments • Before this command is executed, the host must have done the

following:

o Taken control of the SMC using the TakeHostControl

command

o Loaded a locally stored job with the LoadFlashJob

command or the LoadUSBJob command

• The will begin to execute immediately.

• If job execution is required to be synchronous with an external input

such as STRTMRK, then it should have been constructed with a

WaitForIO instruction after the BeginJob instruction.

• At the completion of the job, the job will loop until an Abort

command is received.

• This command returns as soon as the job is dispatched.

See also TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

GetJobStatus (209) Command

Purpose Returns the status of the currently executing job

Implementation "GetJobStatus" or "209"

Parameters None

Returns "Idle" – No job is executing; a job may or may not be loaded.

"Busy" – A job is executing.

See also N/A

Remote Control API

1040-0012 Revision 267

GetJobState (211) Command

Purpose (Reserved for future use) Returns the state of the currently executing job

Implementation "GetJobState" or "211"

Parameters None

Returns <current-sequence-index> – The index number of the currently executing

sequence

<current-sequence-count> – Number of iterations of the current

executing sequence

<current-segment-index> – The index number of the currently executing

segment

<current-segment-count> – Number of iterations of the currently

executing segment

<current-segment-name> – The name of the currently executing segment

Ex: “1,2,3,1,Preamble”

See also N/A

GetJobElapsedTime (212) Command

Purpose Returns the last measured duration (in milliseconds) of the currently

executing job.

Implementation "GetJobElapsedTime" or "212"

Parameters None

Returns <time-in-msec> – Last measured job execution duration in milliseconds

Comments Time is measured based in the monitoring of the BeginJob and EndJob

events. Jobs must be constructed with these instructions to be measured.

See also N/A

Remote Control API

1040-0012 Revision 268

StartScanScript (213) Command

Purpose Indicates that a script body is to follow

Implementation "StartScanScript" or "213"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only availbale in enhanced command mode, and paired

with EndScanScript command.

Any text between StartScanScript and EndScanScript without a command

prefix is considered as script body. Consult ScanMaster Designer (SMD)

ScanScript help document for script syntax. A short example that makes 2

circles:

$1001: StartScanScript

Image.Circle(0, 0, 1)

Image.Circle(-1, 0, 2)

$1002:EndScanScript

See also EndScanScript, and RunScanScript

EndScanScript (214) Command

Purpose Close the script body that started with StartScanScript command.

Implementation " EndScanScript " or "214"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only available in enhanced command mode, and paired

with StartScanscript command.

Any text between StartScanScript and EndScanScript without a command

prefix is consider as script body. Consult ScanMaster Designer (SMD)

ScanScript help document for script syntax. A short example that makes 2

circles:

$1001: StartScanScript

Image.Circle(0, 0, 1)

Remote Control API

1040-0012 Revision 269

EndScanScript (214) Command

Image.Circle(-1, 0, 2)

$1002:EndScanScript

See also StartScanScript, and RunScanScript

RunScanScript (215) Command

Purpose Run the script that loaded with StartScanScript and end EndScanScript

command.

Implementation " RunScanScript " or "215"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only availbale in enhanced command mode.

See also StartScanScript, and EndScanScript

GetJobFileList (217) Command

Purpose Returns a comma separated list of job files located on the tmp folder on

the SMC.

Implementation "GetJobFileList", <job-location> or "217, <job-location>"

Parameters <job-location> – where to get the job list

1 = from SMC flash drive

2 = from SMC USB drive

3 = from SMC tmp folder

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded onto a USB Flash file system through the use of the

saveJobData method.

tmp folder is volatile. All the files in tmp folder will be lost after power

cycle.

Remote Control API

1040-0012 Revision 270

GetJobFileList (217) Command

See also saveJobData

GetJobFileList (217) Command

Purpose Returns a comma separated list of job files located on the tmp folder on

the SMC.

Implementation "GetJobFileList", <job-location> or "217, <job-location>"

Parameters <job-location> – where to get the job list

1 = from SMC flash drive

2 = from SMC USB drive

3 = from SMC tmp folder

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded onto a USB Flash file system through the use of the

saveJobData method.

tmp folder is volatile. All the files in tmp folder will be lost after power

cycle.

See also saveJobData

7.3.3 SYSTEM ADMINISTRATION COMMANDS

SetAdminPIN (500) Command

Purpose (Obsolete) Sets the Administrator PIN (password).

Implementation "SetAdminPIN,<admin-pin>" or "500,<admin-pin>"

Parameters
<admin-pin> New administrator PIN as a numeric string

Value range 000000 - 999999

Returns "0" – Command acknowledge

Remote Control API

1040-0012 Revision 271

SetAdminPIN (500) Command

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• The Administrator PIN is used with the Pendant interface to protect

access to administrator functions.

See also GetUserPIN, SetUserPIN

GetAdminPIN (501) Command

Purpose (Obsolete) Gets the current Administrator PIN (password)

Implementation "GetAdminPIN" or "501"

Parameters None

Returns <admin-pin> – Administrator PIN as a numeric string

Comments
The Administrator PIN is used with the Pendant interface to protect access

to administrator functions

See also SetAdminPIN, GetUserPIN, SetUserPIN

SetDHCPMode (502) Command

Purpose Sets the DHCP addressing mode

Implementation "SetDHCPMode,<mode>" or "502,<mode>"

Parameters <mode> – "Static" or "Autodetect"

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• Static IP addressing parameters are set using the SetLocalIP,

SetLocalGateway, and SetSubnetMask commands. The board

must be reset before these settings take effect.

• Automatic IP addressing mode causes the SMC to request an IP

address from a DHCP server when it boots up. If no server

Remote Control API

1040-0012 Revision 272

SetDHCPMode (502) Command

responds within a time-out period, the SMC automatically assigns

itself an IP address in the range 169.254.xxx.yyy with a net-mask

value of 255.255.0.0.

See also SetLocalIP, SetLocalGateway, SetSubnetMask

GetDHCPMode (503) Command

Purpose Gets the current DHCP addressing mode

Implementation "GetDHCPMode" or "503"

Parameters None

Returns
"Static" – Means that Static IP addressing is used

"Autodetect" – Means that Automatic DHCP-based addressing is used

Comments

• Static IP addressing is set using the SetLocalIP, SetLocalGateway,

SetSubnetMask and SetDHCPMode command. The board must be

reset before these settings take effect.

• Automatic IP addressing mode causes the SMC to request an IP

address from a DHCP server when it boots up. If no server

responds within a time-out period, the SMC automatically assigns

itself an IP address in the range 169.254.xxx.yyy with a net-mask

value of 255.255.0.0.

See also SetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

SetLocalGateway (504) Command

Purpose
Sets the gateway IP address used by the SMC if the SMC is in static IP

addressing mode.

Implementation "SetLocalGateway,<gateway-address>" or "504,<gateway-address>"

Parameters Gateway Address in dot notation (e.g., 192.168.101.2)

Returns "0" – Command acknowledge

Remote Control API

1040-0012 Revision 273

SetLocalGateway (504) Command

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to give

the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the SetLocalIP and

SetSubnetMask commands. The board must be reset before these

settings take effect.

See also GetLocalGateway, SetLocalIP, SetSubnetMask, SetDHCPMode

GetLocalGateway (505) Command

Purpose
Returns the gateway IP address used by the SMC if the SMC is in static IP

addressing mode.

Implementation "GetLocalGateway" or "505"

Parameters None

Returns Gateway Address in dot notation (e.g., 192.168.101.2)

See also SetLocalGateway

SetLocalIP (506) Command

Purpose
Sets the IP address used by the SMC if the SMC is in static IP addressing

mode.

Implementation "SetLocalIP,<IP-address>" or "506,<IP-address>"

Parameters IP Address in dot notation (e.g., 192.168.101.200)

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to give

the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the

SetLocalGateway and SetSubnetMask commands. The board must

be reset before these settings take effect.

Remote Control API

1040-0012 Revision 274

SetLocalIP (506) Command

See also GetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

GetLocalIP (507) Command

Purpose
Returns the IP address used by the SMC if the SMC is in static IP addressing

mode.

Implementation "GetLocalIP" or "507"

Parameters None

Returns Static IP Address in dot notation (e.g., 192.168.101.2)

See also SetLocalIP

SetNodeFriendlyName (508) Command

Purpose Sets the "friendly name" of the SMC.

Implementation "SetNodeFriendlyName,<friendly-name>" or "508,<friendly-name>"

Parameters
<friendly-name> – String representing the friendly name assigned to the

SMC

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to give

the host exclusive control of the SMC.)

• The "friendly name" of the SMC corresponds to the tag FriendlyName

in the Administration Configuration file.

See also GetNodeFriendlyName

GetNodeFriendlyName (509) Command

Purpose Returns the "friendly name" of the SMC.

Implementation "GetNodeFriendlyName" or "509"

Remote Control API

1040-0012 Revision 275

GetNodeFriendlyName (509) Command

Parameters None

Returns Friendly name – String representing the friendly name assigned to the SMC

Comments
The "friendly name" of the SMC corresponds to the tag FriendlyName in the

Administration Configuration file.

See also SetNodeFriendlyName

SetSubnetMask (510) Command

Purpose
Sets the subnet mask used by the SMC if the SMC is in static IP addressing

mode.

Implementation "SetSubnetMask,<mask>" or "510,<mask>"

Parameters <mask> – Subnet mask in dot notation (e.g., 255.255.255.0)

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to give

the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the

SetLocalGateway and SetLocalIP commands. The board must be

reset before these settings take effect.

See also GetSubnetMask, SetLocalGateway, SetLocalIP, SetDHCPMode

GetSubnetMask (511) Command

Purpose
Returns the subnet mask used by the SMC if the SMC is in static IP

addressing mode.

Implementation "GetSubnetMask" or "511"

Parameters None

Returns Subnet mask in dot notation (e.g., 255.255.255.0)

See also SetSubnetMask

Remote Control API

1040-0012 Revision 276

SetUserPIN (512) Command

Purpose (Obsolete) Sets the Administrator PIN (password)

Implementation "SetUserPIN,<user-pin>" or "512,<user-pin>"

Parameters <user-pin> – New user PIN as a numeric string

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to

give the host exclusive control of the SMC.)

• The User PIN is used with the Pendant interface to protect access to

SMC functions.

See also GetAdminPIN, SetAdminPIN

GetUserPIN (513) Command

Purpose (Obsolete) Gets the current User PIN (password)

Implementation "GetUserPIN" or "513"

Parameters None

Returns <user-pin> (User PIN as a numeric string)

Comments
The User PIN is used with the Pendant interface to protect unauthorized

access to SMC functions.

See also SetUserPIN, GetAdminPIN, SetAdminPIN

SetCOMPortSpeed (514) Command

Purpose
Sets the speed of the pendant, API, and motion-control COM ports on the

SMC.

Remote Control API

1040-0012 Revision 277

SetCOMPortSpeed (514) Command

Implementation

"SetCOMPortSpeed,<pendant-port-baud-rate>,<api-port-baud-

rate>,<motion-control-port-baud-rate>"

 or

"514,<pendant-port-baud-rate>,<api-port-baud-rate>,<motion-control-

port-baud-rate>"

Parameters

<pendant-port-baud-rate> The speed of the pendant COM port on

the SMC

Value range 110, 300, 1200, 2400, 4800, 9600,

19200, 38400, 57600, 115200, 128000,

and 256000

<api-port-baud-rate> The speed of the API COM port on the

SMC

Value range 110, 300, 1200, 2400, 4800, 9600,

19200, 38400, 57600, 115200, 128000,

and 256000

<motion-control-port-baud-

rate>

The speed of the motion-control COM

port on the SMC

Value range 110, 300, 1200, 2400, 4800, 9600,

19200, 38400, 57600, 115200,1 28000,

and 256000

Returns "0" – Command acknowledge

Comments

The three COM ports on the SMC are logically identified as “pendant”,
“api”, and “motion-control” and are physically mapped using the
command SetCOMPortAssignments.

See also GetCOMPortSpeed, SetCOMPortAssignments, GetCOMPortAssignments

GetCOMPortSpeed (515) Command

Purpose
Gets the current speed of the pendant, API, and motion-control COM

ports on the SMC.

Implementation "GetCOMPortSpeed" or "515"

Remote Control API

1040-0012 Revision 278

GetCOMPortSpeed (515) Command

Parameters None

Returns

<pendant-port-baud-rate>,<api-port-baud-rate>,<motion-control-port-

baud-rate>

Note: The possible values of <pendant-port-baud-rate>, <api-port-baud-

rate>, and <motion-control-port-baud-rate> are the following: 110, 300,

1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 128000, and

256000.

Comments
Each returned value can be any one of the following: 110, 300, 1200, 2400,

4800, 9600, 19200, 38400, 57600, 115200, 128000, and 256000

See also SetCOMPortSpeed, SetCOMPortAssignments, GetCOMPortAssignments

SetCOMPortAssignments (516) Command

Purpose
Maps the SMC COM ports to the logical pendant, api and motion-control

ports

Implementation

"SetCOMPortAssignments,<pendant-port>,<api-port>,<motion-control-

port>" or

"516,<pendant-port>,<api-port>,<motion-control-port>"

Parameters

<pendant-port> – 0 or 1 Reserved for future use

<api-port> – 0 or 1

<motion-control-port> – 1 or 4

Returns "0" – Command acknowledge

Comments

• The COM port assignments must be unique.

• If hardware flow control is required, then COM1 (1) should be used.

• This command updates the contents of the Administration

Configuration file.

See also SetCOMPortSpeed, GetCOMPortSpeed, GetCOMPortAssignments

Remote Control API

1040-0012 Revision 279

GetCOMPortAssignments (517) Command

Purpose
Gets the current mapping of the SMC COM ports to the logical pendant,

api and motion-control ports

Implementation "GetCOMPortAssignments>" or "517"

Parameters None

Returns "<pendant-port>,<api-port>,<motion-control-port>" (1, 2, or 3)

See also SetCOMPortSpeed, GetCOMPortSpeed, SetCOMPortAssignments

7.4 REMOTE CONTROL RETURN CODES

In certain cases, the response message may be an error message rather than the expected “0” (ACK)
or return variable(s). Table 38 - Remote Control Return Codes in page 242 describes the codes that

may be returned.

Appendix A - Theory of Operation

1040-0012 Revision 280

8 APPENDIX A - THEORY OF OPERATION

8.1 SCANNING JOB FUNDAMENTALS

The purpose of scanning jobs is to direct the motion of laser galvanometers while simultaneously

modulating a laser beam. The laser is turned on when a pattern is to be drawn, and it is turned off

when moving to the beginning of a new pattern location. In laser marker systems, the drawing

action is commonly referred to as a “Mark”, and a move to new pattern location is called a “Jump”.
These terms will be used in this appendix even though an SMC could be used for laser projection

where a more appropriate term for “Mark” might be “display”.

8.1.1 COORDINATE SYSTEM CONVENTIONS

The movement commands “MarkAbs” and “JumpAbs” are expressed in Cartesian coordinates as

shown in the following figure.

(-223, 0)

(0, 223-1)

(223-1, 0)

(0, -223)

(0, 0)
X

Y

Figure 18 - SCANNING SYSTEM COORDINATE CONVENTIONS

Appendix A - Theory of Operation

1040-0012 Revision 281

The SMC is inherently a 24-bit address controller. Some commands however are backwards

compatible to the 16-bit EC1000. If the API is operating in “bits” mode (see the Units command)

then the arguments of the commands JumpAbs and MarkAbs are assumed to be 16-bit integers with

a range of -32768 to +32767 and are converted to 24-bit values by padding them with 8 bits of zeros

in the least significant bit positions.

If the motion commands JumpAbsEx and MarkAbsEx are used, the API must be guided how to make

the conversion the 24-bits. This is because these commands can pass up to 32-bits of global

coordinate data which could represent values in a 16-bit, 20-bit, or 24-bit scanner address space

depending on the origins of the job data and what the design assumptions were. By using the

command ActuatorUnits..the API can correctly convert the command values to 24-bit form. By

default, 16-bit data is assumed.

8.1.2 MARKS AND JUMPS

Laser marking is specified by a list of XML data that defines “Jumps” to locations and “Marks” to the
end points of a vector or series of “connected” vectors otherwise known as poly-vectors. Other XML

data represent commands to specify related actions and pauses required to ensure the desired

marking quality. The terms Mark, Jump, and related delays are defined in Table 27 - Laser Marking

Terms and Definitions on the following page.

Figure 19 - LASER MARKING SAMPLE

The above figure shows a sample of the beginning of a simple laser marking. The image is composed

of straight line segments (vectors). Connected line segments are formed with sequential Mark

commands and spaces between unconnected segments are formed with Jump commands. Both

Marks and Jumps are controlled-velocity coordinated X and Y galvo motions. The speeds are

controllable within a job.

Appendix A - Theory of Operation

1040-0012 Revision 282

8.1.3 LASER MARKING TERMS AND DEFINITIONS

The following table contains definitions of laser marking terms.

Table 27 - LASER MARKING TERMS AND DEFINITIONS

Term Purpose

Jump A jump causes a (typically) rapid movement of the scanner mirrors to a new

position. Ideally, no marking occurs during a jump. The laser is typically turned

off during a jump.

If a jump is followed by a mark, the jump command defines the starting point (X

and Y coordinates) of the laser marking; the SMC directs the laser to the end of

the “jump” position where marking will begin.

Jump Speed The jump speed determines the speed of the jump. The laser is off during a

jump, and the jump speed is set high enough to maximize throughput but low

enough to minimize instability in the galvo motion as the galvo slows down in its

approach to the next marking location.

Mark A mark command begins the marking process. The laser typically turns on at the

beginning of the mark command and continues at a set speed to its pre-defined

location at the end point of the command. As show in the above figure,

subsequent mark commands can create a sequence of marks. The laser is turned

off at the end of the last mark command in a series of commands.

Mark Speed The Mark Speed sets the speed during marking. The speed is set to a value that

allows the laser to form the proper width and depth of a mark in the target

media. This value is dependent on the laser power and target material.

Delays Delays are used to ensure that the marking is complete with no skips, no over-

burns, and no inadvertent marks. Delay commands are necessary to

compensate for system inertia, acceleration, deceleration, and requested jump

and marking speeds.

In addition to the dynamic signals used to control the galvanometers and lasers, the SMC provides

supplemental digital inputs and outputs for external equipment synchronization, and two analog

outputs for laser power adjustment. These signals can be manipulated at any point in a job, but are

less tightly controlled in time than the galvanometer and laser control signals.

The default initial galvanometer position after system power-up is in the center of the image field

unless otherwise specified in the ControlConfig file by the InitPosition tag. Marks and jumps are

Appendix A - Theory of Operation

1040-0012 Revision 283

specified from the current position of the galvanometers to a new target position. Jobs typically

begin with an absolute jump to the first marking position, and after that, each vector (jump or mark)

starts at the new current position, which is usually the end point of the preceding vector.

8.1.4 MICRO-VECTORING

Controlled velocity marking and jumping is accomplished through a process call micro-vectoring.

This process is illustrated in the following figure. The marking engine of the SMC takes a vector and

divides it into multiple shorter segments that are applied to the galvos at regularly spaced time

intervals. This interval is known as the update interval. The galvo speed is controlled by the

magnitude of the change in the output command at each update period.

The figure shows the sequence of typical output commands for the X-axis. The commands for the Y-

axis and Z-axis are similar and are strictly locked in time with the X-axis, differing only in magnitude

of the discrete steps. As the X-axis reaches successive targets X1,X2, etc., so do the Y- and Z-axis reach

their corresponding targets, Y1, Z1,Y2, Z2, etc.

Figure 20 - MICRO-VECTOR OPERATION

8.1.5 DELAYS

Because laser scanning systems are electro-mechanical in nature, various delays must be employed

to compensate for inertial effects of the mirror and motor structure. These inertial effects generally

result in a positional lag of the deflection mirrors relative to the electrical command to make them

move. These delays are used to properly time laser on/off and modulation signals relative to the

Appendix A - Theory of Operation

1040-0012 Revision 284

mirror positions. In addition to compensating for lag times, the delays can be used to compensate

for transient instability in mirror positions after a step to a new location. The following figures

illustrate these effects.

Each system configuration requires fine-tuning of delay commands to ensure full and complete

marking with no overburns. The individual delay settings are dependant on the dynamic response of

the galvo/mirror combination in use, and the sensitivity characteristics of the marking medium.

Determining these delays is typically a process of trial and error. The delays are specified as part of

the job definition described in the following pages.

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

JumpDelay During a jump, the

system mirrors

accelerate to rapidly get

to the next mark

position—ideally at the

fastest possible speed—
to minimize overall

marking time. As with

all accelerations, mirror

and system inertia

create a slight lag at the

beginning of the

acceleration. Likewise,

the system will require

a certain delay (settling

time) at the end of the

jump as it decelerates

to precisely the correct

speed required for

accurate marking.

Acceleration and

deceleration times and

settling times will vary

from system to

system—due to the

weight of mirrors, the

type of galvanometer,

etc.—and will also vary

Appendix A - Theory of Operation

1040-0012 Revision 285

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

depending on the jump

speed and the length of

the jump.

A too-short Jump Delay

will cause marking to

start before mirrors are

properly settled,

resulting in inadvertent

marking.

A too-long Jump Delay

will have no visible

effect, but marking is

delayed so overall job

production time

(marking time)

increases.

MarkDelay A mark delay at the end

of marking a line

segment allows the

mirrors to move to the

required position prior

to executing the next

mark command.

A too-short Mark Delay

will allow the

subsequent jump

command to begin

before the system

mirrors get to their final

marking position. The

end of the current mark

will turn upwards

towards the direction of

the jump vector, as

shown to the right.

A too-long Mark delay

will cause no visible

Appendix A - Theory of Operation

1040-0012 Revision 286

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

marking errors but will

add to the overall

processing time.

LaserOnDela

y

The Laser On Delay can

be used to prevent

burn-in effects at the

start of a vector. This

delay is typically used to

turn on the laser after

the first few microsteps

of a mark command,

ensuring that the laser's

motion control systems

(mirrors, etc.) are “up to
speed” before marking.
The vectors must be

scanned with a constant

velocity to ensure

uniform marking.

This delay can have

either a positive or

negative value and will

vary with different

marking media (some

media require a burn-in

time to begin marking).

The goal is to adjust the

Laser On Delay to

ensure uniform marking

with no variations of

intensity throughout the

desired vector.

Typically, too short of a

delay will cause burn-in

effects, and too long of

a delay may cause

Appendix A - Theory of Operation

1040-0012 Revision 287

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

disconnected line

segments.

PolyDelay A polygon delay is a

delay that is

automatically inserted

between two marking

segments. The

minimum delay allows

enough time for the

galvos and mirror to

“catch-up” with the
command signal before

a new command is

issued to move on to

the next point.

If variable polygon delay

mode is selected, then

the delay is variable and

changes as a function

how large an angular

change is required to

move on to the next

point. The larger the

angular change, the

longer it takes for the

galvos to change

direction and accelerate

to the required speed in

the new direction. The

delay is scaled

proportionally to the

size of the angle.

Appendix A - Theory of Operation

1040-0012 Revision 288

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

LaserOffDela

y

The Laser Off Delay can

be used to prevent

burn-in effects at the

end of a vector. This

delay is typically used to

turn off the laser just

after the last few micro-

steps of a mark

command, ensuring that

the marking stops

exactly where it is

supposed to.

The goal is to adjust the

Laser Off Delay to

ensure uniform marking

with no variations of

intensity throughout the

desired vector.

Typically, too short of a

delay will cause line

segments that are

prematurely

treminated, and too

long of a delay will

cause burn-in at the end

of line segments.

Appendix A - Theory of Operation

1040-0012 Revision 289

The relationship of the delays to the micro-vectoring process is illustrated in the following figure.

Figure 21 - MICRO-VECTORING AND LASER TIMING RELATIONSHIPS

8.2 IMAGE FIELD CORRECTION

Image field correction capability is provided to compensate for optical errors induced by all two-

mirror laser beam systems. These optical distortions are caused by a number of factors, including the

distance between each mirror, the distance between the mirrors and the image field, and the type of

lens used in the laser for focusing the laser beam.

The following figure shows the basic projection system layout.

Appendix A - Theory of Operation

1040-0012 Revision 290

Figure 22 - PROJECTION SYSTEM LAYOUT

8.2.1 X-Y MIRROR INDUCED DISTORTION

Projection of a laser beam via an X-Y mirror set controlled by galvanometers induces distortion in the

X-axis proportional to the tangent of the angle of the Y-axis mirror and the distance from the focal

plane to the center of the Y-axis mirror. This distortion is also known as “pincushion” distortion.

Beam direction

Θx

Θy

Appendix A - Theory of Operation

1040-0012 Revision 291

Figure 23 - PINCUSHION DISTORTION CAUSED BY AN X-Y MIRROR SET

8.2.2 F-THETA OBJECTIVE INDUCED DISTORTION

The addition of an F-theta objective in the laser field provides direct proportionality between the

scan angle and the distance in the image field. The addition of an F-theta objective in the laser field

also ensures that the focus lies on a flat surface. F-theta objective lenses, like all optical lenses, are

not perfect and induce their own projection field distortions. This distortion, illustrated in the

following figure, is called “pillow” distortion for what it does to a square image. In reality, this

distortion is radially symetric from the image field origin and can often be modeled as a third order

polynomial. Many projection lens vendors will provide these model coefficients, or measurement

data from which these coefficients can be derived. For many applications, however, this distortion is

negligible.

Figure 24 - PILLOW DISTORTION CAUSED BY F-THETA LENS

Appendix A - Theory of Operation

1040-0012 Revision 292

8.2.3 COMPOSITE DISTORTION AND CORRECTION METHODOLOGY

The two distortion components described above combine to create a distorted image field similar to

that shown in the following figure. The SMC automatically compensates for this distortion by the use

of correction tables.

Figure 25 - COMPOSITE IMAGE FIELD DISTORTION

Correction tables represent a 65x65 element grid covering the full addressable projection range of

the system. Each grid element contains three correction components: one each for the X, Y and Z

axes. The components represent an offset that, if added to an ideal position command for that point,

would alter the galvo positions such that the resulting projected point would fall onto a “perfect”
grid (i.e., the point would be “corrected”).

During the micro-vectoring process at each update interval, the SMC calculates the ideal position of

the mirrors along the path. It compares this value to the correction table grid and accesses the four

grid points that immediately surround the calculated point. The corrections at these four points are

proportionally averaged depending on how close the ideal point is to each grid point. This process,

called bi-linear interpolation, produces a correction that is applied to the ideal point, and the result is

then sent to the system D/A converters and serial digital command outputs.

8.2.4 MULTIPLE CORRECTION TABLE SUPPORT

The SMC has integral support for up to four independent three-axis correction tables. These tables

are organized in pairs where the first pair is applied to the Auxiliary XY2-100 port and GSBus axes 0,

1, 2, and the second pair is applied to the primary XY2-100 port and GSBus axes 3, 4, 5. The job

Appendix A - Theory of Operation

1040-0012 Revision 293

parameter ActiveCorrectionTable dynamically selects which table of each pair that is actually used.

The first of the two tables in the pair is intended to be used when actual laser processing is taking

place. The second table of the pair is intended to be used with a pointer laser.

Table contents can be automatically loaded on board power-up from stored correction table files, or

they can be dynamically loaded via the sendStreamData method of the session API.

ActiveCorrectionTable

Selection (1 or 2)

Micro-vector

generation
Vector data

Time-domain

micro-vector data

Correction

Table 1

Correction

Table 2

Correction

Table 3

Correction

Table 4

Correction

table

application

Correction

table

application

1

2

1

2

AUX XY2-100 Port 2:

X, Y, Z

GSBus Channels 0-2

X, Y, Z

XY2-100 Port 1:

X, Y, Z

GSBus Channels 3-5

X, Y, Z

Figure 26 - MULTIPLE CORRECTION TABLE USAGE IN THE SMC

8.3 LASER TIMING CONTROL

The SMC provides very flexible laser control capability that is synchronized with galvo motion control.

Six dedicated TTL-compatible signals (whose timing relationships are defined by the diagram below)

are provided at all times. Not all signals may be required for a given customer laser configuration.

An integrator need only select an appropriate subset of these signals, and configure them via

software with appropriate timing parameters. Provisions are made for the synchronous control of

two separate lasers running with two independent pulse-widths during the laser-on period. Laser

control timing is specified in terms of laser timing “ticks” which can be set via software to an interval
as small as 20ns to as large as 1.3ms with a resolution of 20ns. The typical tick value is set to 1µsec.

Appendix A - Theory of Operation

1040-0012 Revision 294

½ standby

period

Laser on delay

(+/-), + shown

Laser off delay

½ output

period

LASER_MOD1

LASER_MOD2

LASER_GATE

LASER_MOD3

Laser FPK position

(+/-), - shown

Laser FPK length

Micro-vector start

Laser modulation delay

Laser enable

timeout

Pulse may be

truncated

LASER_ENABLE

Laser enable delay

Servo Position Cmd

Micro-vectoring in

process

Laser Stand-by time Laser On time

Figure 27 - LASER TIMING RELATIONSHIPS

Notes:

1. LaserEnableDelay, LaserEnableTimeout, and LaserModDelay must be >=0.

2. Laser Enable delay is relative to the leading edge of LASER_GATE, but the leading edge of

LASER_ENABLE will never occur after any of the following:

• Micro-vector start

• The leading edge of LASER_GATE

• The leading edge of LASER_MOD3 (FPK usage)

3. Laser On delay may be positive or negative and is relative to Micro-vector start.

4. LASER_MOD3 (FPK) position may be positive or negative and is relative to the leading edge of

LASER_GATE.

5. Laser pulse generation starts relative to, but no earlier than, the leading edge of LASER_GATE or

the leading edge of LASER_MOD3.

Appendix A - Theory of Operation

1040-0012 Revision 295

6. Standby pulse suppression is accomplished by setting the standby pulse width to zero.

7. The first laser-on laser pulse on LASER_MOD1 & 2 is always a full pulse.

8. The signal LASER_POINTER is also provided with multiple programmable functions to support

pointer laser operation.

Figure 27 - Laser Timing Relationships on page 294 introduces 12 timing parameters that can be set

to yield signal relationships that are suitable for controlling all known commercial lasers used in

marking or projection scanning systems. The reference point for the timing is the beginning of micro-

vectoring and is shown on the diagram as Micro-vector start.

When the marking engine processor encounters a mark instruction, it asserts the LASER_ENABLE

signal and waits for the specified Laser Enable delay. The LASER_ENABLE signal is normally used to

precondition fiber laser systems in anticipation of being called into action during a marking

operation. LASER_ENABLE will remain asserted until the Laser Enable timeout period expires after

marking has stopped, i.e. after the last vector of a sequence of marking vectors. If a new series of

marking vectors begins before the Laser Enable timeout expires, LASER_ENABLE remains asserted

and a new timeout period is armed.

When the Laser Enable delay expires, one of three things will happen based on the setting of the

delay parameters:

1. Micro-vectoring begins if Laser On Delay and Laser First Pulse Killer (FPK) position are both

positive.

2. LASER_GATE is asserted if Laser On Delay is negative and Laser FPK position is positive.

3. LASER_MOD3 is asserted if Laser FPK delay is negative and Laser On delay is also negative OR if

Laser FPK delay is negative and the absolute value of Laser FPK delay is larger than Laser On delay

if Laser On delay is positive.

As can be seen from Figure 27 - Laser Timing Relationships on page 294, the timing of laser emission

is directly related to the timing of the LASER_GATE signal. Pulse emission will never occur earlier than

the leading edge of LASER_GATE or LASER_MOD3, but it may be delayed after the leading edge of

LASER_GATE by setting the Laser Modulation delay to a non-zero value. The LASER_MOD3 signal may

be asserted any time before or after the leading edge of LASER_GATE. The signals LASER MOD3 and

LASER_MODn are dependently related to the timing of LASER_GATE. That is, if Laser On delay is

changed, the system timing is changed to keep all three signals in the proper timing relationship.

The LASER_MOD1 and LASER_MOD2 signals are time-related in that the periods of the signals must

be the same for the standby (laser not active) and output active (laser emitting) intervals. The

phase of the two signals is programmable and is typically set to be 180 degrees apart from each

other to ensure that the two lasers never fire at the same instant of time, thus reducing peak power

Appendix A - Theory of Operation

1040-0012 Revision 296

demands and reducing EMI effects. Otherwise, the pulse widths during the standby and output active

intervals are independent and programmable for each signal.

4. The lasers are turned off automatically after the micro-vectoring completes and the Laser Off

delay expires. The LASER_GATE signal is de-asserted and the LASER_MOD1/2 signals switch to

the standby mode

8.4 SOFTWARE CONTROL OF LASER TIMING

The laser timing configuration is statically specified in an XML based configuration file stored on the

SMC and is automatically applied at system boot-up. The configuration can be changed by reading it

through the software Application Programming Interface (API), altering it, and then sending it back to

the controller. Changes made this way would be applied every time the SMC re-initializes. The

configuration information can also be specified dynamically in a job stream and applied on a

temporary basis being persistent only until the next re-initialization. These concepts are described

more fully in Table 36 - Example IPG Fiber Laser Configuration XML on page 313.

All of the programmable control elements of the SMC are manipulated through XML language

constructs passed through the API. At system boot-up, XML configuration files are read from Flash

memory on the controller and some of the parameters are applied to the hardware to pre-configure

it. The Laser Configuration fixed-data contains definitions to specify laser marking and idle-time

pulse-widths and frequency, signal polarities, FPK signal timing, etc. These parameters do not often

change during a marking job, although provisions are made in the Job Stream XML specification to do

so if required. Other laser timing parameters such an Laser On Delay and Laser Off Delay are

expected to change as the job is tuned for best performance. These parameters are directly

controlled by JobStream XML constructs, but not in the Laser Configuration XML specification.

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserTiming>50</LaserTiming>

Dynamic Configuration XML Example: <set id='LaserTiming'>50</set>

Example Description: Set the laser time base to 1µsec:

50 * 20ns = 1µsec “tick”

Appendix A - Theory of Operation

1040-0012 Revision 297

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserPipelineDelay>0</LaserPipelineDelay>

Dynamic Configuration XML Example: <set id='LaserPipelineDelay'>0</set>

Example Description: Normally zero except when using Cambridge Technology DC900,

DC2000, or DC3000 digital servos. This value is used the delay all of the

laser timing signals as a group relative to the galvo commands. The

maximum pipleine delay value is equivalent to 4000 laser ticks so the

specified value maximum will be reduces depending on the

LaserTiming value. For example, if LaserTiming is 50 (1usec resolution)

then the maximum value will be 4000usec. If LaserTiming is set to 5

(0.1usec resolution), then the maximum piline value is 400usec.

Static Configuration XML Example: <'LaserPowerDelay'>1700</'LaserPowerDelay'>

Dynamic Configuration XML Example: <set id='LaserPowerDelay'>1700</set>

Example Description: The job will delay for 1.7msec every time the laser power is changed.

Static Configuration XML Examples: <LaserModeConfig>0x0</LaserModeConfig>

Dynamic Configuration XML Example: <set id='LaserModeConfig'>0x0</set>

Example Description: LaserModeConfig uses a bit-mask to represent the various signal

polarities.

Static Configuration XML Example: <LaserEnableDelay>7</LaserEnableDelay>

Dynamic Configuration XML Example: <set id='LaserEnableDelay'>7</set>

Example Description: Wait 7msec after asserting the LASERENABLE signal.

Static Configuration XML Example: <LaserEnableTimeout>50</LaserEnableTimeout>

Dynamic Configuration XML Example: <set id='LaserEnableTimeout'>50</set>

Example Description: Deassert LASSERENABLE if there is no laser activity requested within

50msec of when the laser turned off.

Static Configuration XML Example: <LaserModDelay>20</LaserModDelay>

Dynamic Configuration XML Example: <set id='LaserModDelay'>20</set>

Example Description: Delay the modulation of the laser for 20 laser timing ticks after

LASER_GATE is asserted.

Appendix A - Theory of Operation

1040-0012 Revision 298

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserFPK position='-30' width='10'/>

Dynamic Configuration XML Example: <set id='LaserFPK'>-30; 10</set>

Example Description: Assert LASER_MOD3 30 laser timing ticks in advance of the leading

edge of LASER_GATE. Deassert LASER_MOD3 10 laser timing ticks after

it was asserted.

Static Configuration XML Examples: <LaserStandby laser='1' width='5' period='200'/>

 <LaserStandby laser='2' width='5' period='200'/>

Dynamic Configuration XML Example: <set id='LaserStandby'>1; 5; 200</set>

 <set id='LaserStandby'>2; 5; 200</set>

Example Description: For Lasers 1 & 2, set the stand-by (idle) pulse width to 5 laser timing

ticks and set the period to 200 ticks. This is a pulse frequency of 5KHz

provided that LaserTiming is set to 50.

Dynamic Configuration XML Example: <set id='LaserOnDelay'>150</set>

Example Description: LASER_GATE is asserted 150 laser timing ticks after the start of micro-

vectoring.

Dynamic Configuration XML Example: <set id='LaserOffDelay'>100</set>

Example Description: LASER_GATE is deasserted 100 laser timing ticks after the micro-

vectoring has completed.

Dynamic Configuration XML Example: <set id='LaserPulse'>1; 8; 15</set>

Example Description: For Laser 1, set the “Laser On” pulse width to 8 laser timing ticks and
set the period to 15 ticks. This is a pulse frequency of 66.7KHz

provided that LaserTiming is set to 50.

Dynamic Configuration XML Example: <set id='LaserPulse'>2; 10; 5</set>

Example Description: Laser 2 period always follows Laser 1. For Laser 2, set “Laser On” pulse
width 10 ticks and the phase shift to 5 ticks. This is a pulse frequency

of 66.7KHz provided that LaserTiming is set to 50.

Appendix A - Theory of Operation

1040-0012 Revision 299

8.4.1 LASER TIMING EMULATION

Traditional laser scanning controllers often use fixed signal sets and constrained timing relationships

to provide laser control, whereas the SMC uses a completely flexible and programmable suite of

signals. The SMC can be configured to emulate the timing produced by other commercial controllers

because of the flexible nature of the laser timing generator.

Typical laser configurations are shown in the following diagrams. These configurations emulate the

laser control performed by the RAYLASE AG SP-ICE card, and SCANLAB RTC3/4/5 and SCANalone

series of scan head controllers. These configurations are by no means the only ones possible, and

new laser systems are frequently introduced. Most notably, fiber lasers have become much more

reliable and affordable, offering compact packaging and highly efficient energy properties. The SMC

has been specifically designed to accommodate the unique timing requirements of these lasers.

Along with each diagram are static and dynamic XML examples for configuring the laser. Only those

parameters that are meaningful for the illustration are specified in the examples. Other

parameters—such as those used to set signal polarities, Laser Enable Delay/Timeout, Standby (Tickle)

timing, Laser Power Delay and Laser Pipeline Delay—are almost always set to pre-defined values.

Laser Pulse timing, although potentially variable during a job, does not affect the fundamental signal

relationships that define the laser emulation modes. In addition, the specification of a laser timing

“tick” is most conveniently set to a 1µsec interval, which is assumed in the examples.

Appendix A - Theory of Operation

1040-0012 Revision 300

CO2 Laser Timing

½ standby

period

Laser 1 standby pulse width

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Microvector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay == 0

Laser FPK length == 0

Micor-vector start

Laser modulation delay

== Laser on delay

Laser enable

timeout

Pulse may be

truncated
Standby pulse period

Laser ouput

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in

process

(Used for timing

reference only)

Figure 28 - LASER TIMING FOR CO2 LASER SYSTEMS

The simplest emulation mode is for CO2 lasers. These lasers do not require a Laser FPK signal so

these parameters are set to zero. LASER_ENABLE is also not typically needed, therefore the Laser

Enable delay and Laser Enable timeout can be set to zero to maximize throughput. In fact, whenever

LASER_ENABLE is not required, the Laser Enable delay should be set to zero.

Appendix A - Theory of Operation

1040-0012 Revision 301

Table 30 - EXAMPLE CO2 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</LaserE

nableDelay >
<set id='LaserEnableDelay'>0</set> Maximizes throughput

<LaserEnableTimeout>0</Las

erEnableTimeout >

<set

id='LaserEnableTimeout'>0</set>
Maximizes throughput

<LaserModDelay>0</LaserM

odDelay>
<set id='LaserModDelay'>0</set>

No modulation delay

required

<LaserFPK>0, 0</LaserFPK> <set id='LaserFPK '>0, 0</set> No FPK required

<LaserStandby>1; 5;

200</LaserStandby>

<set id='LaserStandby'>1; 5;

200</set>

Laser 1 stand-by; pulse

width = 5 laser timing ticks

(5µsec); pulse period = 200

ticks (200µsec) = 5KHz

<LaserStandby>2; 10;

200</LaserStandby>

<set id='LaserStandby'>2; 10;

200</set>

Laser 2; pulse width = 10

laser timing ticks (10µsec);

pulse period = 200 ticks

(200µsec) = 5KHz, must be

same as Laser 1

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =

150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =

100µsec

N/A <set id='LaserPulse'>1; 8; 15</set>

Laser 1 operating; pulse

width = 8 laser timing ticks

(8µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

N/A <set id='LaserPulse'>2; 10; 15</set>

Laser 2 operating; pulse

width = 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz,

must be same as Laser 1

Appendix A - Theory of Operation

1040-0012 Revision 302

Nd:YAG Emulation Mode-1 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay

== Laser on delay

Laser enable

timeout

Pulse may be

truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in

process

Figure 29 - ND:YAG EMULATION MODE-1 (RAYLASE ND:YAG MODE-1 AND SCANLAB YAG 1)

Most of theYAG modes do not require standby or idle pulses. To suppress these pulses, the Standby

pulse width and pulse period are set to zero. In this mode, the LASER_MOD3 is asserted coincident

with the LASER_GATE and LASER_MOD1 signals, but its assertion can have variable length. If the

Laser On delay is modified, the timing of LASER_MOD3 and LASER_MOD1 track with it.

Appendix A - Theory of Operation

1040-0012 Revision 303

Table 31 - EXAMPLE ND:YAG MODE-1 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Laser

EnableDelay >

<set

id='LaserEnableDelay'>0</set>
Maximizes throughput

<LaserEnableTimeout>0</La

serEnableTimeout >

<set

id='LaserEnableTimeout'>0</set>
Maximizes throughput

<LaserModDelay>0</LaserM

odDelay>
<set id='LaserModDelay'>0</set> No modulation delay required

<LaserFPK>0, 15</LaserFPK> <set id='LaserFPK '>0, 15</set>
Example FPK length set to

15usec with no shift

<LaserStandby>1; 0;

0</LaserStandby>

<set id='LaserStandby'>1; 0;

0</set>

1 = laser; no tickle pulses

required

<LaserStandby>2; 0;

0</LaserStandby>

<set id='LaserStandby'>2; 0;

0</set>

2 = laser; no tickle pulses

required

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =

150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =

100µsec

N/A
<set id='LaserPulse'>1; 8;

15</set>

Laser 1 operating; pulse width

= 8 laser timing ticks (8µsec);

pulse period = 15 ticks (15µsec

) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;

15</set>

Laser 2 operating; pulse width

= 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision 304

Nd:YAG Emulation Mode-2 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay ==

Laser modulation delay -

Laser on delay

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay ==0

Laser FPK length == 10us

Micro-vector start

Laser modulation delay

== Desired FPS

Laser enable

timeout

Pulse may be

truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in

process

Desired FPS

Figure 30 - ND:YAG EMULATION MODE-2 (RAYLASE ND:YAG MODE-2)

In this mode, the LASER_MOD3 signal is a 10µ sec pulse asserted a variable amount of time prior to

the assertion of LASER_GATE and the coincident generation of pulses. This timing is typically suited

for Lee and Coherent lasers.

Appendix A - Theory of Operation

1040-0012 Revision 305

Table 32 - EXAMPLE ND:YAG EMULATION MODE-2 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Laser

EnableDelay >

<set

id='LaserEnableDelay'>0</set>
Maximizes throughput

<LaserEnableTimeout>0</La

serEnableTimeout >

<set

id='LaserEnableTimeout'>0</set>
Maximizes throughput

<LaserModDelay>0</LaserM

odDelay>
<set id='LaserModDelay'>0</set> No modulation delay required

<LaserFPK>-20,

10</LaserFPK>
<set id='LaserFPK '>-20, 10</set>

Example FPK length set to

10µsec with a minus 20µsec

shift relative to LASER_GATE

<LaserStandby>1; 0;

0</LaserStandby>

<set id='LaserStandby'>1; 0;

0</set>

1 = laser; no tickle pulses

required

<LaserStandby>2; 0;

0</LaserStandby>

<set id='LaserStandby'>2; 0;

0</set>

2 = laser; no tickle pulses

required

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =

150µsec

N/A
<set

id='LaserOffDelay'>100</set>

100 laser timing ticks =

100µsec

N/A
<set id='LaserPulse'>1; 8;

15</set>

Laser 1 operating; pulse width

= 8 laser timing ticks (8µsec);

pulse period = 15 ticks (15µsec

) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;

15</set>

Laser 2 operating; pulse width

= 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision 306

Nd:YAG Emulation Mode-3 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay ==

Laser modulation delay -

Laser on delay

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay ==0

Laser FPK length == 10us

Micro-vector start

Laser modulation delay

== Desired FPS

Laser enable

timeout

Pulse may be

truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in

process

Desired FPS

Figure 31 - ND:YAG EMULATION MODE-3 (RAYLASE ND:YAG MODE-3)

This mode is very similar to Mode-2. The difference is that Laser FPK length can vary. Spectron lasers

normally use this type of timing.

Table 33 - EXAMPLE ND:YAG MODE-3 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase

rEnableDelay >

<set

id='LaserEnableDelay'>0</set>
Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision 307

Table 33 - EXAMPLE ND:YAG MODE-3 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L

aserEnableTimeout >

<set

id='LaserEnableTimeout'>0</set>
Maximizes throughput

<LaserModDelay>0</Laser

ModDelay>
<set id='LaserModDelay'>0</set>

No modulation delay

required

<LaserFPK>-20,

18</LaserFPK>
<set id='LaserFPK '>-20, 18</set>

Example FPK length set to

18µsec with a minus 20µsec

shift relative to

LASER_GATE

<LaserStandby>1; 0;

0</LaserStandby>

<set id='LaserStandby'>1; 0;

0</set>

1 = laser; no tickle pulses

required

<LaserStandby>2; 0;

0</LaserStandby>

<set id='LaserStandby'>2; 0;

0</set>

2 = laser; no tickle pulses

required

N/A
<set

id='LaserOnDelay'>150</set>

150 laser timing ticks =

150µsec

N/A
<set

id='LaserOffDelay'>100</set>

100 laser timing ticks =

100µsec

N/A
<set id='LaserPulse'>1; 8;

15</set>

Laser 1 operating; pulse

width = 8 laser timing ticks

(8µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;

15</set>

Laser 2 operating; pulse

width = 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision 308

Nd:YAG Emulation Mode-4 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay ==

Laser FPK delay +

Laser FPK length

Laser enable

timeout

Pulse may be

truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in

process

Figure 32 - ND:YAG EMULATION MODE-4 (SCANLAB YAG 2)

In this mode, the LASE_MOD3 signal leading edge is coincident with the leading edge of LASER_GATE,

and the generation of the laser pulses is delayed to be coincident with the trailing edge of the

LASER_MOD3 signal.

Table 34 - EXAMPLE ND:YAG MODE-4 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase

rEnableDelay >

<set

id='LaserEnableDelay'>0</set>
Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision 309

Table 34 - EXAMPLE ND:YAG MODE-4 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L

aserEnableTimeout >

<set

id='LaserEnableTimeout'>0</set

>

Maximizes throughput

<LaserModDelay>15</Laser

ModDelay>

<set

id='LaserModDelay'>15</set>

Laser modulation delayed by

the same value as the

LASER_MOD3 length

<LaserFPK>0,

15</LaserFPK>
<set id='LaserFPK '>0, 15</set>

Example FPK length set to

15µsec with no shift relative

to LASER_GATE

<LaserStandby>1; 0;

0</LaserStandby>

<set id='LaserStandby'>1; 0;

0</set>

1 = laser; no tickle pulses

required

<LaserStandby>2; 0;

0</LaserStandby>

<set id='LaserStandby'>2; 0;

0</set>

2 = laser; no tickle pulses

required

N/A
<set

id='LaserOnDelay'>150</set>

150 laser timing ticks =

150µsec

N/A
<set

id='LaserOffDelay'>100</set>

100 laser timing ticks =

100µsec

N/A
<set id='LaserPulse'>1; 8;

15</set>

Laser 1 operating; pulse width

= 8 laser timing ticks (8µsec);

pulse period = 15 ticks

(15µsec) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;

15</set>

Laser 2 operating; pulse width

= 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz,

must be same as Laser 1

Appendix A - Theory of Operation

1040-0012 Revision 310

Nd:YAG Emulation Mode-5 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay ==

Laser FPK delay + 10us

Laser enable

timeout

Pulse may be

truncated

Laser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in

process

10us

Figure 33 - ND:YAG EMULATION MODE-5 (SCANLAB YAG 3)

This mode is very similar to emulation mode-4. The difference is that the start of laser pulse

generation is 10µ sec after the coincident leading edges of LASER_GATE and LASER_MOD3.

Table 35 - EXAMPLE ND:YAG MODE-5 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase

rEnableDelay >

<set

id='LaserEnableDelay'>0</set>
Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision 311

Table 35 - EXAMPLE ND:YAG MODE-5 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L

aserEnableTimeout >

<set

id='LaserEnableTimeout'>0</set>
Maximizes throughput

<LaserModDelay>10</Laser

ModDelay>

<set

id='LaserModDelay'>10</set>

Laser modulation delayed by

10µsec relative to

LASER_GATE

<LaserFPK>0,

20</LaserFPK>
<set id='LaserFPK '>0, 20</set>

Example FPK length set to

20µsec with no shift relative

to LASER_GATE

<LaserStandby>1; 0;

0</LaserStandby>

<set id='LaserStandby'>1; 0;

0</set>

1 = laser; no tickle pulses

required

<LaserStandby>2; 0;

0</LaserStandby>

<set id='LaserStandby'>2; 0;

0</set>

2 = laser; no tickle pulses

required

N/A
<set

id='LaserOnDelay'>150</set>

150 laser timing ticks =

150µsec

N/A
<set

id='LaserOffDelay'>100</set>

100 laser timing ticks =

100µsec

N/A
<set id='LaserPulse'>1; 8;

15</set>

Laser 1 operating; pulse width

= 8 laser timing ticks (8µsec);

pulse period = 15 ticks (15µsec

) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;

15</set>

Laser 2 operating; pulse width

= 10 laser timing ticks

(10µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision 312

Fiber Laser Timing

½ standby

period
Laser 1 standby

pulse width

Laser On delay

(+/-), + shown

Laser Off delay

½ output

period

Laser 1 pulse

width

Laser 2 pulse

width

LASER_MOD1

LASER_MOD2

LASER_GATE

LASER_MOD3

Laser FPK position = 0

Laser FPK length = 0

Micro-vector start

Laser Modulation delay = 0

Laser Enable

timeout

Standby pulse period Laser output

pulse period

LASER_ENABLE

Laser Enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in

process

Figure 34 - FIBER LASER TIMING

Pulsed fiber lasers have recently become very popular because of a reduced cost of ownership

relative to more traditional YAG lasers. The IPG YLP series of lasers introduces a new control signal

requirement that is met with the LASER_ENABLE signal of the SMC. The MO (Master Oscillator)

signal defined in the IPG “B” interface specification is intended to be driven by the LASER_ENABLE

signal of the SMC. This signal is used to prepare the fiber laser to generate output pulses and must be

asserted at least 7ms before pulses are required. In addition, this signal should be deasserted after

laser emission in order to save power and extend the life of the laser. Deassertion, however, should

not be done too quickly in order to avoid the overhead of restarting the laser. Deassertion is usually

done after all marking is done in a job. In the case of the SMC, a timeout is provided to automatically

deassert the LASER_ENABLE signal after a period of inactivity.

Appendix A - Theory of Operation

1040-0012 Revision 313

In the above diagram notice that the LASER_MOD3 signal is made inactive (i.e., it is not required by

the interface.) The pulse width of the standby and active periods is set to 50% of the pulse period

(square wave) since laser emission is triggered on the leading edge of the pulse. Pulse width does

not determine the level of power emitted; only the pulse frequency (or period) determines average

power. In practice, the pulse-width-to-period ratio can be in a range of 0.1 to 0.9.

 CAUTION

The IPG laser Type A interface specifies that the pulse period must not be longer than a minimum

value. The SMC does not protect against incorrect programming; the application must prevent

incorrect values from being used.

Table 36 - EXAMPLE IPG FIBER LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>8</LaserE

nableDelay >
<set id='LaserEnableDelay'>8</set>

Minimum master oscillator

startup time

<LaserEnableTimeout>50</La

serEnableTimeout >

<set

id='LaserEnableTimeout'>50</set>

Shut down laser master

oscilator if no laser activity

for 10msec

<LaserModDelay>0</LaserMo

dDelay>
<set id='LaserModDelay'>0</set>

No modulation delay

required

<LaserFPK>0, 0</LaserFPK> <set id='LaserFPK '>0, 0</set> No FPK required

<LaserStandby>1; 25;

50</LaserStandby>

<set id='LaserStandby'>1; 25;

50</set>

Laser 1 stand-by; pulse

width = 25 laser timing

ticks (25µsec); pulse period

= 50 ticks (50µsec) =

20.0KHz

<LaserStandby>2; 25;

50</LaserStandby>

<set id='LaserStandby'>1; 25;

50</set>

Laser 2; Settings the same

as Laser 1

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =

150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =

100µsec

Appendix A - Theory of Operation

1040-0012 Revision 314

Table 36 - EXAMPLE IPG FIBER LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

N/A <set id='LaserPulse'>1; 8; 15</set>

Laser 1 operating; pulse

width = 8 laser timing ticks

(8µsec); pulse period = 15

ticks (15µsec) = 66.7KHz

N/A <set id='LaserPulse'>2; 10; 15</set>

Laser 2 operating; pulse

width = 10 laser timing

ticks (10µsec); pulse period

= 15 ticks (15µsec) =

66.7KHz

Appendix B - Error Codes

1040-0012 Revision 315

9 APPENDIX B - ERROR CODES

9.1 XML API ERROR CODES

Table 37 - API ERROR CODES

Table 38 -

Error Name Code Description

Success 0 Operation successful

Error_AccessDenied 1 TCP/IP networking access was denied

Error_Communications 2 TCP/IP network communications error ocurred

Error_NotConnected 3 Client is not connected to the server

Error_IllegalClientId 4 Internal error

Error_InvalidPersistState 5 Internal error

Error_ServerNameNotFound 8 Requested server name is not valid

Error_InvalidParameter 9 Bad parameter to a method call

Error_Network 10 TCP/IP networking error

Error_DataNotFound 11 Requested data file not found

Error_PathNotFound 12 Specified path does not exist

Error_Access 13 Access to server file system was denied

Error_LocalAccess 14 Access to the client file system was denied or

Server is under control of a local pendant

Appendix B - Error Codes

1040-0012 Revision 316

Table 37 - API ERROR CODES

Table 38 -

Error Name Code Description

Error_DataUnknown 15 XML data type is unknown

Error_EventHandling 16 Internal event processing error

Error_NotAvailable 17 Server is not currently available

Error_CancelByUser 18 Server is aborting by user

Error_Aborting 19 Server is currently aborting

Error_LicenseUnavailable 21 License is not found

Error_LicenseAccessDenied 22 License is not granted

Error_Exception 23 Internal error

Error_Timeout 24 Requested action timed out

Error_NoData 25 The requested fixed data was empty

Error_DataExists 26 Destination file already exists and over-write

not specified

Error_RemoteAccess 28 Server is already connected to a client

Error_StateError 29 Server is in an error state and unavailable

Error_NotFound 30 Server is not found

Error_Buffer_Full 31 Streaming data transmit buffer is full

Error_RemoteAPIUnavailable 32 Remote API is in use by another client

Error_RemoteAPITimeout 33 Timed out connecting to the remote API

Error_SocketException 34 Network socket error detected

Appendix B - Error Codes

1040-0012 Revision 317

Table 37 - API ERROR CODES

Table 38 -

Error Name Code Description

Error_CommandSyntax 37 Command syntax error

Error_XMLJobSyntax 38 XML job syntax error

Error_Busy 39 System is busy in running a job

Error_LoginInProgress 99 Error during Login

9.2 REMOTE CONTROL ERROR CODES

Table 39 - REMOTE CONTROL RETURN CODES

Code Meaning Description

0 Success Command processed with no error.

100 No Files Found There were no job files in the device or folder.

101 No Drive No USB disk drive was found.

105 JobException Job causes exception during execution.

106 Not In Host Control The command required that exclusive control of the SMC first be

obtained by executing the TakeHostControl command.

108 Error Job Busy The command cannot execute because a job is running.

110 Error Software An internal software exception occurred.

111 Load Fail Cannot load the job.

112 No Objects Required objecta not exist.

Appendix B - Error Codes

1040-0012 Revision 318

Table 39 - REMOTE CONTROL RETURN CODES

Code Meaning Description

114 Job Files Format The file type (file extention) is not a valid job.

121 File Not Found The named job file was not found.

122 Idle No job is running.

123 Busy A job is running.

124 No Job No job is loaded to run.

125 In Control The Remote Control is in control as the host.

126 Not In Control The Remote Control is not as the host.

127 Bad Command The command was not recognized.

128 Bad Arg The command passed inappropriately formed arguments (or no

argument if an argument was required).

129 Arg Out of Range The command passed argument was not in allowed range.

131 Abort Detected Job is aborting or aborted.

132 Arg Count Not

Matched

Wrong number of command arguments was passed.

202 Abort Job was Aborted.

207 Cannot Open Port Cannot open the serial port.

208 Port Not Open The serial port was not opened before the requested command.

209 Port Timeout The serial port timed out waiting for input.

210 Wrong Port

Number

An invalid COM port ID was specified.

Appendix B - Error Codes

1040-0012 Revision 319

9.3 LastError Code Descriptions

Table 40 - LASTERROR CODE DESCRIPTIONS

Value Description

0 No errors have been detected

300 SMC Linux Memory Map Failed

301 Insuffucient Buffer

302 SMC Not Ready

303 SMC No Free Buffer Segment

304 Error Abort

305 Error Pause

306 SMC Fpga Driver Not Initialized

310 License Serial Number Mismatch

311 License File Corrupted

312 License File Missing

313 License Tiling File Missing

314 License Tray File Missing

315 License Dll Automation File Missing

316 License Database File Missing

317 License Surface Marking File Missing

318 License Engraving File Missing

Appendix B - Error Codes

1040-0012 Revision 320

Value Description

319 SMC Error in Syncmaster License

320 SMC Netlink Failed

321 SMC Netlink Send Message Failed

350 SMC Mailbox Size Exceeded

351 SMC Invalid Data Package

352 SMC System In Error State

353 SMC Using Backup Configuration

400 SMC Abort Detected

401 SMC No Buffer Available

500 SMC Stage Buffer Not Available

501 SMC Stage Not Initialized

502 SMC Stage Sync Update Fail

503 SMC Stage Not Enabled Configuration

504 SMC Stage Serial Communication Failed

505 SMC Stage Data Copy Error

506 SMC Stage Memory Creation Failed

507 SMC Stage Connection Timeout

508 SMC Stage Homing Failed

509 SMC Stage Tracking Not Enabled

510 SMC Stage Invalid Reply

706 Job Sequence Not Found

Appendix B - Error Codes

1040-0012 Revision 321

Value Description

713 Xml Load Error

1001 Bad correction table data in file

1002 Inappropriate scale factor in correction table file

1003 General parsing error of correction table file

1100 Unidentified exception was caught

1101 Correction table memory allocation failed

1102 Error reading the Admin config file

1103 Error reading the Control config file

1104 Error reading the Laser config file

1105 Error reading the Lens config file

1106 Error reading the User config file

1107 Error reading the Performance config file

1108 Error reading the Servo config file

1109 Error reading the Vector Parameters config file

1110 Error reading the Sync Master config file

1120 Default config files being used because of a prior error

detected

1200 Selected config file was not found

1201 Overwrite config file with backup

1300 Invalid XML node detected while parsing

1301 Invalid XML value detected while parsing

1310 Error parsing the Control config file

Appendix B - Error Codes

1040-0012 Revision 322

Value Description

1311 Error parsing the Laser config file

1312 Error parsing the Lens config file

1313 Error parsing the User config file

1314 Error parsing the X axis data in the Servo config file

1315 Error parsing the Y axis data in the Servo config file

1316 Error parsing the Z axis data in the Servo config file

1317 Error parsing the ScanPack vector params

1318 Error parsing the ScanPack spiral params

1319 Error parsing the ScanPack circle params

1320 Error parsing the ScanPack point params

1321 Error parsing the ScanPack laser params

Index

1040-0012 Revision 323

10 INDEX

.

.NET API format, 13

.NET C#, 16

1

1 command. See Abort command

10 command. See GetKFactor command

14 command. See SetPerformanceGlobals

command

15 command. See ResetPerformanceGlobals

command

16 command. See OpenCOMPort command

17 command. See CloseCOMPort command

18 command. See COMWriteLine command

2

2 command. See TakeHostControl command

200 command. See ClearJobList command

203 command. See GetFlashJobFileList

command

204 command. See GetUSBJobFileList

command, See GetUSBJobFileList command,

See GetUSBJobFileList command

205 command. See LoadFlashJob command

206 command. See LoadUSBJob command

207 command. See ExecuteJobOnce command

208 command. See ExecuteJobContinuous

command

209 command. See GetJobStatus command

21 command. See MotfCalFactor command

211 command. See GetJobState command

212 command. See GetJobElapsedTime

command, See GetJobElapsedTime

command, See GetJobElapsedTime

command, See GetJobElapsedTime

command

27 command. See GetZKFactor command

28 command. See GetYKFactor command

29 command. See GetControllerTemp

command, See GetControllerTemp

command, See GetControllerTemp

command, See GetControllerTemp

command

3

3 command. See ReleaseHostControl

command

35 command. See GetDigitalPort command

4

4 command. See GetHostControlStatus

command

5

5 command. See GetHostInControl command

500 command. See SetAdminPIN command

501 command. See GetAdminPIN command

502 command. See SetDHCPMode command

503 command. See GetDHCPMode command

504 command. See SetLocalGateway

command

505 command. See GetLocalGateway

command

506 command. See SetLocalIP command

507 command. See GetLocalIP command

508 command. See SetNodeFriendlyName

command

509 command. See GetNodeFriendlyName

command

510 command. See SetSubnetMask command

511 command. See GetSubnetMask command

512 command. See SetUserPIN command

513 command. See GetUserPIN command

Index

1040-0012 Revision 324

514 command. See SetCOMPortSpeed

command

515 command. See GetCOMPortSpeed

command

516 command. See SetCOMPortAssignments

command

517 command. See GetCOMPortAssignments

command

6

6 command. See EnableBroadcasting

command

7

7 command. See LoadHardwareDefaults

command

8

8 command. See HardwareReset command

9

9 command. See GetRemoteIP command

A

Abort command, 238

ActiveCorrectionTable parameter, 141

ActuatorMin XML Tag, 78

ActuatorUnits XML Tag, 72

Address XML Tag, 46

Admin XML Tag, 49

AliveChannel XML Tag, 45

An XML Tag, 75, 76

Aperture XML Tag, 67

API formats, 13

APIPort XML Tag, 47

APIPortSpeed XML Tag, 47

ApplicationEvent command, 137

ArcAbs command, 108

AVer XML Tag, 29

AxisDACConfig parameter, 147

B

BeginJob command, 137

Bits XML Tag, 59

BreakOK XML Tag, 47

BroadcastChannel XML Tag, 46

C

CalFlag XML Tag, 66

CalibrateRectangularField XML Tag, 71

ClearJobList command, 252

Client XML Tag, 47

CloseCOMPort command, 246

CmdRangeCheckMode parameter, 93

CmdRangeCheckMode XML Tag, 52

CO2 Laser Timing. See Laser Timing Control

COMWriteLine command, 247

Configuration XML Tag, 71, 72

ConnectIP XML Tag, 30

ConnectJob XML Tag, 30

ContrlTemp XML Tag, 33

ControlFile XML Tag, 44

Coordinate System Conventions, 269

Correction Table Support, 281

CorrFile1 XML Tag, 51

CorrFile2 XML Tag, 51

CorrFile3 XML Tag, 51

CorrFile4 XML Tag, 51

CurrentDIO XML Tag, 34

D

Data XML Tag, 28, 30, 32, 34, 44, 51, 57, 58,

66, 69, 70, 81, 82, 83, 84, 85, 86, 87

DataChannel XML Tag, 44

DebugPort XML Tag, 48

DebugPortSpeed XML Tag, 48

Delays, 272

DeleteAllSegments command, 196

DeleteSegment command, 196

Description XML Tag, 70

DesignErrorComponents XML Tag, 73

DFMPort XML Tag, 48

DFMPortSpeed XML Tag, 48

DigitalIOPolarity XML Tag, 56

DisableSegment command, 197

Distortion

Composite Image Field Distortion, 281

Pillow Distortion, 280

Pincushion Distortion, 280

Index

1040-0012 Revision 325

X-Y Mirror Induced Distortion, 279

DistortionFactor XML Tag, 73

Duty XML Tag, 59

Dx XML Tag, 77

Dy XML Tag, 77

Dz XML Tag, 77

E

e1e2Coeffs XML Tag, 76

E1E2Spacing XML Tag, 75

EnableBroadcasting command, 240

EnableParkPosition command, 108

EnableSegment command, 197

EnableStreamToFile XML Tag, 44

EndJob command, 138

EventChannel XML Tag, 45

ExecuteJobContinuous command, 255

ExecuteJobOnce command, 254

ExtPauseControl XML Tag, 56

ExtPwrCtrl XML Tag, 59

F

Fiber Laser Timing. See Laser Timing Control

FieldOffset parameter, 142

FieldOrientation parameter, 142

Fire-on-the-fly, Error! Not a valid bookmark in

entry on page 152

FixedFreq XML Tag, 58

FixedPW XML Tag, 58

FixedWatts XML Tag, 58

FocalLen XML Tag, 67

FPGAFirmVer XML Tag, 29

FreePermStorage XML Tag, 29

FreeTempStorage XML Tag, 29

FreeUSBStorage XML Tag, 29

Freq XML Tag, 59

FriendlyName XML Tag, 30, 46

G

GalvoCmdDelayComp command, 116

GalvoCmdMarker command, 138

GetAdminPIN command, 260

GetCOMPortAssignments command, 268

GetCOMPortSpeed command, 266

GetControllerTemp command, 249

GetDHCPMode command, 261

GetErrorCodeDescription method, 235

GetFlashJobFileList command, 252

GetHostControlStatus command, 239

GetHostInControl command, 240

GetJobElapsedTime command, 256, 257, 258

GetJobState command, 256

GetJobStatus command, 255

GetKFactor command, 242

GetLocalGateway command, 262

GetLocalIP command, 263

GetNodeFriendlyName command, 263

getPriorityData method, 232

GetRemoteIP command, 242

GetSubnetMask command, 264

GetUSBJobFileList command, 252, 258, 259

GetUserPIN command, 265

GetYKFactor command, 248

GetZKFactor command, 248

H

HardwareReset command, 241

HeadParameters XML Tag, 73, 76

HeadSerialNumber XML Tag, 46

HeadType XML Tag, 71

HSN XML Tag, 30

I

InitPosition XML Tag, 55

InsGenMode XML Tag, 55

Installation location, 14

Interlock XML Tag, 33, 59

IntlockConfig XML Tag, 53

IP XML Tag, 30

IPAddress XML Tag, 49

IPGateway XML Tag, 49

IPMode XML Tag, 49

IPRetries XML Tag, 49

IPSubnet XML Tag, 49

IPTimeout XML Tag, 49

IPTryagain XML Tag, 49

ISRGenMode XML Tag, 55

Index

1040-0012 Revision 326

J

Job parameters, Error! Not a valid bookmark

in entry on page 91

JobDataCntr command, 138

JobDataCntr XML Tag, 34

JobMarker command, 139

JobMarker XML Tag, 34

JobTimer command, 140

JumpAbs command, 109

JumpAbsEx command, 110

JumpAbsList command, 111

JumpAndFireList command, 114, 117

JumpDelay parameter, 93

JumpRelEx command, 113

JumpSpeed parameter, 94

JumpStepTime parameter, 95

L

Laser Marking Terms and Definitions, 271

Laser Timing Control, Error! Not a valid

bookmark in entry on page 282

CO2 Laser Timing, 289

Fiber Laser Timing, 301

Laser Timing Emulation, 288

Nd05C3:YAG Emulation Mode-3 Timing, 295

Nd05C3YAG Emulation Mode-1 Timing, 291

Nd05C3YAG Emulation Mode-2 Timing, 293

Nd05C3YAG Emulation Mode-4 Timing, 297

Nd05C3YAG Emulation Mode-5 Timing, 299

Laser Timing Emulation. See Laser Timing

Control

LaserEnable command, 131

LaserEnableDelay parameter, 125, 146

LaserEnableDelay XML Tag, 63

LaserEnableTimeout parameter, 125

LaserEnableTimeout XML Tag, 63

LaserFile XML Tag, 51

LaserFire command, 132

LaserFPK XML Tag, 63

LaserModDelay parameter, 126

LaserModDelay XML Tag, 63

LaserModeConfig parameter, 147

LaserModeConfig XML Tag, 60

LaserModType parameter, 130

LaserOffDelay parameter, 126

LaserOn command, 132

LaserOnDelay parameter, 127

LaserPipelineDelay parameter, 128

LaserPipelineDelay XML Tag, 52

LaserPort XML Tag, 48

LaserPortSpeed XML Tag, 48

LaserPower XML Tag, 85, 86

LaserPowerDelay parameter, 128

LaserPowerDelay XML Tag, 64

LaserPulse parameter, 129

LaserRegulation command, 166

LaserScribe command, 166

LaserSignalOff command, 133

LaserSignalOn command, 133

LaserStandby parameter, 127

LaserStandby XML Tag, 63

LaserTiming parameter, 130

LastError Code Descriptions, 308

LastError XML Tag, 29

Layer XML Tag, 80, 81

Lens XML Tag, 73

LensFile XML Tag, 51

LensFocalLength-mm XML Tag, 74

LensMaxMechHalfAngle-deg XML Tag, 75

LensName XML Tag, 66

LissajousWobble params, 101

LoadFlashJob command, 253

LoadHardwareDefaults command, 241

LoadUSBJob command, 253

LocalMode XML Tag, 46

LoggingLevel XML Tag, 49

LongDelay command, 140

LsrName XML Tag, 58

LsrType XML Tag, 58

M

MAC XML Tag, 30

MarkAbs command, 119

MarkAbsEx command, 120

MarkAbsList command, 121

MarkDelay parameter, 95

Index

1040-0012 Revision 327

MarkRel command, 123

MarkRelEx command, 124

Marks and Jumps, 270

MarkSpeed parameter, 96

MarkSpeed XML Tag, 85, 86

MarkStepTime parameter, 97

MicroStepMode XML Tag, 55

Micro-vectoring, 272

Mirrors XML Tag, 73

mmToActuatorSpaceTransform XML Tag, 76,

78

MotfCalFactor parameter, 160

MotfCalFactor XML Tag, 52

MotfCalGain XML Tag, 51

MotfCapable XML Tag, 51

MotfDelayComp parameter, 161

MotfDirection parameter, 161

MotfDirection XML Tag, 52

MotfEnable command, 164

MotfMode parameter, 162

MotfMode XML Tag, 52

MotfResetJump command, 165

MotfTriggerEvent parameter, 163

MotfTriggerEx parameter, 162

MotfWaitForTrigger command, 165

MotionPort XML Tag, 47

MotionPortSpeed XML Tag, 48

MSN XML Tag, 28

N

Nd05C3YAG Emulation Mode-1 Timing. See

Laser Timing Control

Nd05C3YAG Emulation Mode-2 Timing. See

Laser Timing Control

Nd05C3YAG Emulation Mode-3 Timing. See

Laser Timing Control

Nd05C3YAG Emulation Mode-4 Timing. See

Laser Timing Control

Nd05C3YAG Emulation Mode-5 Timing. See

Laser Timing Control

NetAssign XML Tag, 30

NetMask XML Tag, 30

O

ObjExtVer XML Tag, 29

Offset parameter, 143, 144

OnDataEvent method, 221

OnMessageEvent Message Types, 215

OpenCOMPort command, 245

P

Pendant XML Tag, 47

PendantPort XML Tag, 47

PendantPortSpeed XML Tag, 47

PerformanceFile XML Tag, 51

Period XML Tag, 85, 86

PermStoragePath XML Tag, 29

PincushionFactor XML Tag, 73

PixelMap command, 158

PolyDelay parameter, 97

Port XML Tag, 30, 44, 45, 46

Predefined Application Message Event Codes,

216

PreserveCalFactors XML Tag, 71

PriorityChannel XML Tag, 45

Pulse XML Tag, 58

PulseWidth XML Tag, 85, 86

PVer XML Tag, 29

R

RasterLine command, 159

RasterMode command, 158

RasterParams command, 158

ReferenceInformation XML Tag, 70, 71

RefSurfaceToWorkSurfaceDist-mm XML Tag,

74

ReleaseHostControl command, 239

ResetPerformanceGlobals command, 244

Retransmit XML Tag, 46

Revision history, 5

Rotation XML Tag, 83

RTCCompatibility parameter, 145

RTCCompatibility XML Tag, 55

RunSegment command, 195

Index

1040-0012 Revision 328

S

ScanScript embedded scripting language, 13

Segment command, 194

sendJobData method, 210

sendPriorityData method, 222

sendStreamData method (overload 1), 184,

186, 188, 190, 191

Sequence command, 195

ServoConfig parameter, 150

Set command, 140

SetAdminPIN command, 259

SetCOMPortAssignments command, 267

SetCOMPortSpeed command, 266

SetDHCPMode command, 260

SetLocalGateway command, 261

SetLocalIP command, 262

SetMotfEncoderRate command, 248

SetNodeFriendlyName command, 263

SetSubnetMask command, 264

SettleCheckMode parameter, 180, 182

SetUserPIN command, 265

SMC Hardware Reference Manual, 5

SourceLensID XML Tag, 70

SourceScanHeadID XML Tag, 70

SourceSpacerID XML Tag, 70

StartupJob XML Tag, 56

StateCode XML Tag, 29

StreamFile XML Tag, 45

SupplementalLayers XML Tag, 80, 81

T

TableCreationDate XML Tag, 71

TableDataHasBeenCorrectedFromDesign XML

Tag, 72

TableParams XML Tag, 70, 79

TableRevision XML Tag, 70

TableStructure XML Tag, 78, 79

TakeHostControl command, 238

Tbl1Rotation XML Tag, 68

Tbl1XGain XML Tag, 68

Tbl1XOff XML Tag, 68

Tbl1YGain XML Tag, 68

Tbl1YOff XML Tag, 68

Tbl2Rotation XML Tag, 68

Tbl2XGain XML Tag, 68

Tbl2XOff XML Tag, 68

Tbl2YGain XML Tag, 68

Tbl2YOff XML Tag, 68

Tbl3Rotation XML Tag, 69

Tbl3XGain XML Tag, 68

Tbl3XOff XML Tag, 68

Tbl3YGain XML Tag, 69

Tbl3YOff XML Tag, 68

Tbl4Rotation XML Tag, 69

Tbl4XGain XML Tag, 69

Tbl4XOff XML Tag, 69

Tbl4YGain XML Tag, 69

Tbl4YOff XML Tag, 69

ThirdAxisPresent XML Tag, 71

Transform parameter, 144

TransformEnable parameter, 145

U

Units parameter, 91

UseExtPwrCtrl XML Tag, 59

User XML Tag, 48

UserFile XML Tag, 51

UserVar1 XML Tag, 82

UserVar2 XML Tag, 82

UserVar3 XML Tag, 82

UserVar4 XML Tag, 82

UserVar5 XML Tag, 82

UserVar6 XML Tag, 83

UsingFile command, 197

V

VariJumpDelay parameter, 97

VariPolyDelayFlag parameter, 98

VelocityComp command, 178

VisPtr XML Tag, 59

Volts XML Tag, 59

W

WaitForIO command, 134

Watts XML Tag, 59

WattsUnits XML Tag, 58

Win32 DLL API format, 13

Index

1040-0012 Revision 329

Wobble mode, 99

Wobble parameter, 99

Wobble table, 100

WobbleEnable command, 102

WriteAnalog command, 135

WriteDigital command, 135

X

XActPos XML Tag, 32

XActuatorStride XML Tag, 78

x-axis XML Tag, 80, 81

XGain XML Tag, 83

XGalvoMechHalfAngle-deg XML Tag, 74

XMirrorToObjectiveDist-mm XML Tag, 75

XML in the API, 20

XML Tags

Administration Configuration, 44

Broadcasted Status Information, 32

Broadcasted System Information, 28

Controller Configuration, 51

Correction Table, 70, 80, 82, 83

Laser Configuration, 58, 60

Lens Configuration, 66, 68

Performance Adjustments Table, 84, 85, 86

X-NumCols XML Tag, 78

XOff XML Tag, 83

XOffset XML Tag, 85, 86

XPos XML Tag, 32

XPosAck XML Tag, 32

XPower XML Tag, 33

XStatus XML Tag, 33

XTemp XML Tag, 32

XtoYMirrorDist-mm XML Tag, 74

Xx XML Tag, 76

Xy XML Tag, 77

XY2AddressingMode XML Tag, 54

XY2AxisDisable parameter, 105, 106, 107

XY2ErrorCheckMode parameter, 103, 104

XY2FrameRate XML Tag, 54

XY2StatusTiming XML Tag, 54

XYCalFactor parameter, 92

Xz XML Tag, 77

Y

YActPos XML Tag, 32

YActuatorMin XML Tag, 78

YActuatorStride XML Tag, 78

y-axis XML Tag, 80, 81

YGain XML Tag, 83

YGalvoMechHalfAngle-deg XML Tag, 74

YMirrorToRefSurfaceDist-mm XML Tag, 74

Y-NumRows XML Tag, 79

YOff XML Tag, 83

YOffset XML Tag, 85, 87

YPos XML Tag, 32

YPosAck XML Tag, 32

YPower XML Tag, 33

YStatus XML Tag, 33

YTemp XML Tag, 33

Yx XML Tag, 76

Yy XML Tag, 77

Yz XML Tag, 77

Z

ZActuatorMin XML Tag, 79

ZActuatorStride XML Tag, 79

z-axis XML Tag, 80, 81

ZCalFactor parameter, 92

ZCalFactorCoeffs XML Tag, 75

ZMode XML Tag, 66

Z-NumLayers XML Tag, 79

ZOffset XML Tag, 85, 87

Zx XML Tag, 77

Zy XML Tag, 77

Zz XML Tag, 77

1040-0012 Revision 330

This page is left blank intentionally

Engineered by Cambridge Technology, part of Novanta

Novanta Headquarters, Bedford, USA

Phone: +1-781-266-5700

Email: photonics@novanta.com

Website: www.novantaphotonics.com

1040-0012 Revision A

February 2022

© 2022, Novanta Corporation. All rights reserved.

mailto:photonics@novanta.com
www.novantaphotonics.com

	Table of Contents
	1.1 Safety Symbols 1
	1.2 Safety Labels 2
	1.3 General Safety Guidelines 2
	1.4 Customer Support 3
	2.1 General Notes 5
	2.2 Using This Manual 5
	2.3 Warranty Information 9
	3.1 System Description 11
	3.2 Feature Overview 12
	3.3 Application Programming Interface 13
	4.1 The Use of XML in the API 20
	5.1 Establishing a Connection 22
	5.2 Retrieving Broadcast Data 24
	5.3 Broadcast Data Definitions 27
	6.1 Access to SMC Modules 36
	6.2 Configuration Data Management 38
	6.3 Configuration Data Definitions 43
	6.4 Marking Job Specification 89
	6.5 Job Parameters and Commands 91
	6.6 Structured Job Orgnization 203
	6.7 Marking Job Control and Administration 212
	6.8 Asynchronous Communication 223
	6.9 Priority Communication 232
	6.10 API Error Codes 245
	7.1 TCP/IP Interface 247
	7.2 RS232 Interface 248
	7.3 Protocol Specification 248
	7.4 Remote Control Return Codes 279
	8.1 Scanning Job Fundamentals 280
	8.2 Image Field Correction 289
	8.3 Laser Timing Control 293
	8.4 Software Control of Laser Timing 296
	9.1 XML API Error Codes 315
	9.2 Remote Control Error Codes 317
	9.3 LastError Code Descriptions 319

	List of Tables
	1 Important Information
	1.1 Safety Symbols
	1.2 Safety Labels
	1.3 General Safety Guidelines
	1.4 Customer Support
	Americas, Asia Pacific
	Europe, Middle East, Africa
	China
	Japan

	2 Introduction
	2.1 General Notes
	2.2 Using This Manual
	2.2.1 Purpose
	2.2.2 Revision History

	2.3 Warranty Information

	3 SMC Product introduction
	3.1 System Description
	3.2 Feature Overview
	3.2.1 Hardware Features
	3.2.2 Software Features

	3.3 Application Programming Interface
	3.3.1 Installation Location
	3.3.2 API Structure
	3.3.3 Win32 C++ Interfaces

	4 Software Overview
	4.1 The Use of XML in the API

	5 Broadcast API
	5.1 Establishing a Connection
	5.1.1 clientAttachBroadcast
	5.1.2 clientDetachBroadcast

	5.2 Retrieving Broadcast Data
	5.2.1 getServerCount
	5.2.2 getServerList
	5.2.3 getBroadcastData

	5.3 Broadcast Data Definitions
	5.3.1 Broadcasted System Information
	5.3.2 Broadcasted Status Information

	6 Session API
	6.1 Access to SMC Modules
	6.1.1 loginSession
	6.1.2 logoutSession

	6.2 Configuration Data Management
	6.2.1 getFixedDataList
	6.2.2 requestFixedData
	6.2.3 sendFixedData

	6.3 Configuration Data Definitions
	6.3.1 Administration Configuration
	6.3.2 Controller Configuration
	Controller Configuration Data

	6.3.3 Laser Configuration
	Laser Configuration Data: Header and Host Application Initialization Settings
	Laser Configuration File: Hardware Initialization Settings

	6.3.4 Lens Configuration
	Lens Configuration Data: Header and Host Application Initialization Settings
	Lens Configuration Data: Hardware Initialization Settings

	6.3.5 Correction Tables
	Correction Table Parametric Information
	Correction Table Hardware Initialization Settings

	6.3.6 User Configuration
	User Configuration Data: Header and Host Application Initialization
	User Configuration Data: Hardware Initialization Settings

	6.3.7 Performance Adjustments
	Performance Adjustments Data Header
	Performance Adjustments Data: Hardware Initialization Settings

	6.3.8 Servo Configuration
	Servo Config Data

	6.4 Marking Job Specification
	6.4.1 Job Data Types
	6.4.2 Job Data Definition
	6.4.3 Job Type Specification

	6.5 Job Parameters and Commands
	6.5.1 User Units Conversion
	6.5.2 Motion Control Parameters
	6.5.3 Motion Control Commands
	6.5.4 Laser Control Parameters
	6.5.5 Laser Control Commands
	6.5.6 External I/O Commands
	6.5.7 Utility Commands
	6.5.8 Coordinate System Transform Parameters
	6.5.9 Hardware Interface Configuration Parameters
	6.5.10 Bit-map Raster Support
	Mode 0: Variable Pulse Width "Fire-on-the-fly"
	Mode 1: Variable Power “Fire-on-the-fly”
	Standard Jump-and-fire Raster Mode
	Synchronous Fiber Laser Jump-and-fire Raster Mode

	6.5.11 Bit-map Raster Commands
	Bit-Map Raster Parameters and Commands

	6.5.12 Polygon Bit-map Raster Commands
	6.5.13 Mark-on-the-fly Support
	Mark-on-the-fly Parameters
	Mark-on-the-fly Commands
	SMC MOTF for fixed relative spacing of multiple fields (wire marking)
	SMC MOTF for multi-field imaging using 32-bit virtual addressing

	6.5.14 Velocity Controlled Laser Modulation
	Mode 1 – Duty-cycle
	Mode 2 – Frequency
	Mode 3 – Laser Power
	Velocity Controlled Laser Modulation Compensation

	6.5.15 Via-hole Drilling Support
	Closed-loop operation
	Open-loop operation
	Binary interface for JumpAndFireList data
	Binary interface for JumpAndDrillList data

	6.6 Structured Job Orgnization
	6.6.1 Segment Construct
	6.6.2 Structured Job Sequencing
	Sequence Commands

	6.6.3 Structured Job Example

	6.7 Marking Job Control and Administration
	6.7.1 sendStreamData (overload 1)
	6.7.2 sendStreamData (overload 2)
	6.7.3 sendCorrectionData (overload 1)
	6.7.4 sendCorrectionData (overload 2)
	6.7.5 sendCorrectionData (overload 3)
	6.7.6 saveJobData
	6.7.7 sendJobData
	6.7.8 copyJobData
	6.7.9 manageJobData
	6.7.10 requestJobNameList

	6.8 Asynchronous Communication
	6.8.1 OnConnectEvent
	6.8.2 OnMessageEvent
	6.8.3 OnDataEvent

	6.9 Priority Communication
	6.9.1 sendPriorityData
	6.9.2 Priority Messages
	6.9.3 getPriorityData
	6.9.4 GetRegisters Priority Message OnDataEvent Response
	6.9.5 GetCalFactors Priority Message OnDataEvent Response

	6.10 API Error Codes

	7 Remote Control API
	7.1 TCP/IP Interface
	7.2 RS232 Interface
	7.3 Protocol Specification
	7.3.1 Control and Communications Commands
	7.3.2 Job Execution Control
	7.3.3 System Administration Commands

	7.4 Remote Control Return Codes

	8 Appendix A - Theory of Operation
	8.1 Scanning Job Fundamentals
	8.1.1 Coordinate System Conventions
	8.1.2 Marks and Jumps
	8.1.3 Laser Marking Terms and Definitions
	8.1.4 Micro-Vectoring
	8.1.5 Delays

	8.2 Image Field Correction
	8.2.1 X-Y Mirror Induced Distortion
	8.2.2 F-theta Objective Induced Distortion
	8.2.3 Composite Distortion and Correction Methodology
	8.2.4 Multiple Correction Table Support

	8.3 Laser Timing Control
	8.4 Software Control of Laser Timing
	8.4.1 Laser Timing Emulation
	CO2 Laser Timing
	Nd:YAG Emulation Mode-1 Timing
	Nd:YAG Emulation Mode-2 Timing
	Nd:YAG Emulation Mode-3 Timing
	Nd:YAG Emulation Mode-4 Timing
	Nd:YAG Emulation Mode-5 Timing
	Fiber Laser Timing

	9 Appendix B - Error Codes
	9.1 XML API Error Codes
	9.2 Remote Control Error Codes
	9.3 LastError Code Descriptions

	10 Index

