

1040-0012 Revision Q

 ENGINEERED BY

CAMBRIDGE TECHNOLOGY

ScanMaster Controller

Advanced Laser Positioning and Control for Laser

Steering Systems

Software Reference Manual

Read carefully before using.

Retain for future reference.

Table of Contents

1040-0012 Revision Q

TABLE OF CONTENTS

Table of Contents 2

List of Tables 8

1 Important Information 1

1.1 Safety Symbols 1

1.2 Safety Labels 2

1.3 General Safety Guidelines 2

1.4 Customer Support 3

2 Introduction 5

2.1 General Notes 5

2.2 Using This Manual 5

2.2.1 Purpose 5

2.2.2 Revision History 6

2.3 Warranty Information 10

3 SMC Product introduction 11

3.1 System Description 11

3.2 Feature Overview 12

3.2.1 Hardware Features 12

3.2.2 Software Features 13

3.3 Application Programming Interface 13

3.3.1 Installation Location 14

3.3.2 API Structure 15

3.3.3 Win32 C++ Interfaces 16

4 Software Overview 18

4.1 The Use of XML in the API 20

5 Broadcast API 22

Table of Contents

1040-0012 Revision Q

5.1 Establishing a Connection 22

5.1.1 clientAttachBroadcast 22

5.1.2 clientDetachBroadcast 23

5.2 Retrieving Broadcast Data 24

5.2.1 getServerCount 24

5.2.2 getServerList 25

5.2.3 getBroadcastData 26

5.3 Broadcast Data Definitions 27

5.3.1 Broadcasted System Information 28

5.3.2 Broadcasted Status Information 31

6 Session API 36

6.1 Access to SMC Modules 36

6.1.1 loginSession 36

6.1.2 logoutSession 38

6.2 Configuration Data Management 38

6.2.1 getFixedDataList 39

6.2.2 requestFixedData 41

6.2.3 sendFixedData 42

6.3 Configuration Data Definitions 43

6.3.1 Administration Configuration 45

6.3.2 Controller Configuration 51

6.3.3 Laser Configuration 59

6.3.4 Lens Configuration 67

6.3.5 Correction Tables 71

6.3.6 User Configuration 81

6.3.7 Performance Adjustments 83

6.3.8 Servo Configuration 85

6.4 Marking Job Specification 87

6.4.1 Job Data Types 88

6.4.2 Job Data Definition 88

6.4.3 Job Type Specification 89

6.5 Job Parameters and Commands 90

6.5.1 User Units Conversion 90

6.5.2 Motion Control Parameters 93

Table of Contents

1040-0012 Revision Q

6.5.3 Motion Control Commands 108

6.5.4 Laser Control Parameters 134

6.5.5 Laser Control Commands 141

6.5.6 External I/O Commands 143

6.5.7 Utility Commands 146

6.5.8 Coordinate System Transform Parameters 150

6.5.9 Hardware Interface Configuration Parameters 155

6.5.10 Bit-map Raster Support 161

6.5.11 Bit-map Raster Commands 169

6.5.12 Polygon Bit-map Raster Commands 173

6.5.13 Mark-on-the-fly Support 176

6.5.14 Velocity Controlled Laser Modulation 190

6.5.15 Via-hole Drilling Support 196

6.6 Structured Job Orgnization 201

6.6.1 Segment Construct 202

6.6.2 Structured Job Sequencing 203

6.6.3 Structured Job Example 206

6.7 Marking Job Control and Administration 210

6.7.1 sendStreamData (overload 1) 210

6.7.2 sendStreamData (overload 2) 211

6.7.3 sendCorrectionData (overload 1) 213

6.7.4 sendCorrectionData (overload 2) 214

6.7.5 sendCorrectionData (overload 3) 215

6.7.6 saveJobData 217

6.7.7 sendJobData 218

6.7.8 copyJobData 219

6.7.9 manageJobData 219

6.7.10 requestJobNameList 220

6.7.11 copyUserDataFile 221

6.7.12 manageUserDataFile 222

6.7.13 requestUserDataFileList 223

6.8 Asynchronous Communication 224

6.8.1 OnConnectEvent 224

6.8.2 OnMessageEvent 225

6.8.3 OnDataEvent 232

6.9 Priority Communication 233

Table of Contents

1040-0012 Revision Q

6.9.1 sendPriorityData 233

6.9.2 Priority Messages 234

6.9.3 getPriorityData 243

6.9.4 GetRegisters Priority Message OnDataEvent Response 244

6.9.5 GetCalFactors Priority Message OnDataEvent Response 246

6.10 API Error Codes 247

7 Remote Control API 248

7.1 TCP/IP Interface 248

7.2 RS232 Interface 249

7.3 Protocol Specification 249

7.3.1 Control and Communications Commands 250

7.3.2 Job Execution Control 265

7.3.3 System Administration Commands 272

7.4 Remote Control Return Codes 281

8 Appendix A - Theory of Operation 282

8.1 Scanning Job Fundamentals 282

8.1.1 Coordinate System Conventions 282

8.1.2 Marks and Jumps 283

8.1.3 Laser Marking Terms and Definitions 284

8.1.4 Micro-Vectoring 285

8.1.5 Delays 285

8.2 Image Field Correction 291

8.2.1 X-Y Mirror Induced Distortion 292

8.2.2 F-theta Objective Induced Distortion 293

8.2.3 Composite Distortion and Correction Methodology 294

8.2.4 Multiple Correction Table Support 294

8.3 Laser Timing Control 295

8.4 Software Control of Laser Timing 298

8.4.1 Laser Timing Emulation 301

9 Appendix B - Error Codes 317

9.1 XML API Error Codes 317

9.2 Remote Control Error Codes 319

Table of Contents

1040-0012 Revision Q

9.3 LastError Code Descriptions 321

10 Index 325

LIST OF FIGURES

Figure 1 - Client-Server Architecture ..18

Figure 2 - SMC Software Data Flow ..19

Figure 3 - SMC Configuration File Relationships ..39

Figure 4 - “Fire-on-the-fly”, Mode 0, One bit per pixel gated triggering ...163

Figure 5 - “Fire-on-the-fly”, Mode 0, One bit per pixel continuous triggering with selective gating ..164

Figure 6 - “Fire-on-the-fly”, Mode 0, Eight bits per pixel ...165

Figure 7 - “Fire-on-the-fly”, Mode 1 ...166

Figure 8 - Standard “Jump-and-fire” Mode ..167

Figure 9 - Synchronous “Jump-and-fire” Mode..169

Figure 10 - Mark-on-the-fly Basic Process Flow ...185

Figure 11 - Mark-on-the-fly Usage in Wire Marking ..186

Figure 12 - Mark-on-the-fly Usage in Multi-image-field Applications..188

Figure 13 - Velocity Controlled Laser Modulation Overview ...191

Figure 14 - Velocity Controlled Laser Modulation: Duty-cycle, Acceleration Effect192

Figure 15 - Velocity Controlled Laser Modulation: Duty-cycle, Deceleration Effect192

Figure 16 - Velocity Controlled Laser Modulation: Frequency, Acceleration Effect193

Figure 17 - Velocity Controlled Laser Modulation: Frequency, Deceleration Effect194

Figure 18 - Velocity Controlled Laser Modulation: Laser Power ..194

Figure 19 - Interlock Sequencing ..231

Table of Contents

1040-0012 Revision Q

Figure 20 - Scanning System Coordinate Conventions ...282

Figure 21 - Laser Marking Sample ..283

Figure 22 - Micro-vector Operation ...285

Figure 23 - Micro-vectoring and Laser Timing Relationships ...291

Figure 24 - Projection System Layout ...292

Figure 25 - Pincushion Distortion Caused by an X-Y Mirror Set ...293

Figure 26 - Pillow Distortion Caused by F-theta Lens ...293

Figure 27 - Composite Image Field Distortion ..294

Figure 28 - Multiple Correction Table Usage in the SMC ...295

Figure 29 - Laser Timing Relationships ...296

Figure 30 - Laser Timing for CO2 Laser Systems ...302

Figure 31 - Nd:YAG Emulation Mode-1 (Raylase Nd:YAG Mode-1 and Scanlab YAG 1).......................304

Figure 32 - Nd:YAG Emulation Mode-2 (Raylase Nd:YAG Mode-2) ...306

Figure 33 - Nd:YAG Emulation Mode-3 (Raylase Nd:YAG Mode-3) ...308

Figure 34 - Nd:YAG Emulation Mode-4 (Scanlab YAG 2) ..310

Figure 35 - Nd:YAG Emulation Mode-5 (Scanlab YAG 3) ..312

Figure 36 - Fiber Laser Timing ..314

List of Tables

1040-0012 Revision Q

LIST OF TABLES

Table 1 - Revision History ... 6

Table 2 - SMC API DLLs ...14

Table 3 - Sample XML Statements ..20

Table 4 - Broadcast Data Types ..27

Table 5 - Data Type Keys ..27

Table 6 - Broadcasted System Information ..28

Table 7 - State Code Descriptions ..30

Table 8 - Broadcasted Status Information ..32

Table 9 - Fixed Data Type Codes ..43

Table 10 - Administration Configuration Data ...45

Table 11 - Controller Configuration Data ...51

Table 12 - Laser Configuration Data: Header and Host Application Initialization Settings59

Table 13 - Hardware Initialization Settings ..61

Table 14 - Lens Configuration Data: Header and Host Application Initialization Settings68

Table 15 - Lens Configuration Data: Hardware Initialization Settings ...69

Table 16 - Correction Table Parametric Information ...71

Table 17 - Correction Table Hardware Initialization Settings ...79

Table 18 - User Configuration Data Settings: Header and Host Application Initialization81

Table 19 - User Configuration Data: Hardware Initialization Settings ...82

Table 20 - Performance Adjustments Data Header ...84

Table 21 - Performance Adjustments Data: Hardware Initialization Settings..84

Table 22 - Servo Config Data ..86

Table 23 - Structured Job Example ...206

Table 24 - OnMessageEvent Message Types ...226

Table 25 - Predefined Application Message Event Codes ..227

List of Tables

1040-0012 Revision Q

Table 26 - Priority Message Descriptions ...234

Table 27 - Laser Marking Terms and Definitions ..284

Table 28 - Delay Parameters ..286

Table 29 - Laser Configuration Control XML Examples ..298

Table 30 - Example CO2 Laser Configuration XML ..303

Table 31 - Example Nd:YAG Mode-1 Laser Configuration XML ..305

Table 32 - Example Nd:YAG Emulation Mode-2 Laser Configuration XML ..307

Table 33 - Example Nd:YAG Mode-3 Laser Configuration XML ..308

Table 34 - Example Nd:YAG Mode-4 Laser Configuration XML ..310

Table 35 - Example Nd:YAG Mode-5 Laser Configuration XML ..312

Table 36 - Example IPG Fiber Laser Configuration XML ...315

Table 37 - API Error Codes ..317

Table 38 - Remote Control Return Codes ...319

Table 39 - LastError Code Descriptions ..321

Important Information

1040-0012 Revision Q 1

1 IMPORTANT INFORMATION

For your protection, carefully read these instructions before installing and operating the scan

head.

Retain these instructions for future reference.

Novant reserves the right to update this user manual at any time without prior notification.

If product ownership changes, this manual should accompany the product.

1.1 SAFETY SYMBOLS

This manual uses the following symbols and signal words for information of importance.

 DANGER

Indicates a hazardous situation which, if not avoided, will result in serious injury or death.

 WARNING

Indicates a hazardous situation which, if not avoided, could result in serious injury or death.

 CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

 IMPORTANT

Indicates information considered important but not directly hazard related (e.g. security, hygiene,

or equipment or property damage).

Important Information

1040-0012 Revision Q 2

1.2 SAFETY LABELS

 DANGER

Laser radiation

can cause severe retinal and corneal burns, burns on the skin, and may pose a fire risk.

• To avoid injury and reduce risk of fire, please follow the control measures and safety

guidelines provided by the laser’s manufacturer, and those established by your Laser Safety

Officer (LSO), Radiation Safety Officer (RSO), or safety department of your business or

institution.

 ESD WARNING

Electrostatic discharge and improper handling

can damage MOVIA scan head’s electronics.

• Keep the equipment sealed until it is located at a proper static control station.

1.3 GENERAL SAFETY GUIDELINES

Laser Radiation

Do not stare directly into a laser beam.

Follow all system laser safety requirements during installation and operation.

Shutter Safety

Where practical, Novanta recommends the use of an internal shutter mechanism to

prevent unwarranted emission of laser radiation. If this is not possible, consult the

laser vendor to design a proper safety shutter that, when activated, will eliminate all

possibility of exposure exceeding Class 1 limits.

The safety shutter should be located between the laser and the input aperture of the 3-Axis system.

This is the user’s responsibility Use of controls, adjustments, or procedures other than those specified

Important Information

1040-0012 Revision Q 3

in this manual without consulting a competent safety professional may result in component damage,

and/or exposure to potential hazards. Always follow established industrial safety practices when

operating equipment.

This system is designed to be operated in conjunction with a laser. Therefore, all applicable rules and

regulations for safe operation of lasers must be known and applied when installing and operating the

system. Since Novanta Inc. has no influence over the employed laser or the overall system, the

customer is solely responsible for the laser safety of the entire system.

1.4 CUSTOMER SUPPORT

Before contacting Novanta for assistance, review appropriate sections in the manual that may

answer your questions.

After consulting this manual, please contact one of our worldwide offices between 9 AM and 5 PM

local time.

Americas, Asia Pacific

Novanta Headquarters, Bedford, USA

Phone: +1-781-266-5700

Email: photonics@novanta.com

Europe, Middle East, Africa

Novanta Europe GmbH, Wackersdorf, Germany

Phone: +49 9431 7984-0

Email: photonics@novanta.com

Milan, Italy

Phone: +39-039-793-710

Email: photonics@novanta.com

China

Novanta Sales & Service Office, Shenzhen, China

Phone: +86-755-8280-5395

Email: photonics.china@novanta.com

mailto:photonics@novanta.com
mailto:photonics@novanta.com
mailto:photonics@novanta.com
mailto:photonics.china@novanta.com

Important Information

1040-0012 Revision Q 4

Novanta Sales & Service Office, Suzhou, China

Phone: +86-512-6283-7080

Email: photonics.china@novanta.com

Japan

Novanta Service & Sales Office, Tokyo, Japan

Phone: +81-3-5753-2460

Email: photonics.japan@novanta.com

mailto:photonics.china@novanta.com
mailto:photonics.japan@novanta.com

Introduction

1040-0012 Revision Q 5

2 INTRODUCTION

2.1 GENERAL NOTES

Novanta reserves the right to make changes to the products covered in this manual to improve

performance, reliability, or manufacturability.

Although every effort has been made to ensure accuracy of the information contained in this manual,

Novant assumes no responsibility for inadvertent errors. Contents of the manual are subject to change

without notice.

2.2 USING THIS MANUAL

2.2.1 PURPOSE

This manual covers the XML based application programming interface for the ScanMaster Controller

(also known as the SMC). Information on the SMC hardware can be obtained from the SMC Hardware

Reference Manual (Lit. No. P0900-0168).

Additional detailed operational information is contained in “1

Introduction

1040-0012 Revision Q 6

Appendix A - Theory of Operation” on page 282.

2.2.2 REVISION HISTORY

The following table shows the revision history for this document.

Table 1 - REVISION HISTORY

REV DATE Changes from previous revision

A Dec 11, 2014 First release

B Nov 2, 2015

Attach/Detach session is now obsolete

Redistributables directory has been reorganized

Win32 access is through new DLL interfaces

Added AdminConfig items to configure IP addressing

Added ControlConfig items for marking mode control, digital polarity
control, and external pause control.

JumpAndFireList methods added to API to permit binary data passing
for efficiency

Section added for via-hole drilling explaining closed-loop and the new
open-loop modes

All Rev 1 tags in LaserConfig file have been deprecated and removed
from the definitions

Rev 2 tags LaserModType and LaserModSyncSrc are now deprecated in
the LaserConfig file replaced by bits in the LaserModeConfig tag value

Remote Control API now supported

SMC LastError code table added

MotfEnable description expanded to describe Continuous and
Continuous with edge-of-field detection modes.

Introduction

1040-0012 Revision Q 7

C Dec 5, 2016

Updated contact information and changed CTI references to Cambridge
Technology

Installation folder root has changes from “CTI” to “Cambridge
Technology”

Correction table port mappings were fixed to match the implementation

SetMotfEncoderRate (21) Remote Control API Command is now
Obsolete

Attach/Detach session is reinstated

C++ interfaces have been added method descriptions

New class-based C++ wrapper DLLs are available for C++ app
development.

Added <Set id=’XY2AddressMode’> command

MotfWaitForTrigger count value is raw encoder counts

Added JumpAndDrillList commands

LensConfig table offsets are now I33

Use new CT logo and fixed Japan support e-mail address

Added a section on EC1000 Win32 application migration to the new
Win32 DLLs

Exception code table updated

Fixed some formatting issues

Added sendCorrectionData (overload 3)

<LaserEnable> changed to <set id=’EnableLaser’>

User Config offset values are floats

D Mar 27, 2017

Priority message “Restart” is now marked as available

Remote API message “SetMotfEncoderRate” has be un-obsoleted

Footer Copyright notice changed to 2017

E July 18, 2017 Added WobbleMode to set constant overlap wobble at full mark speed

Introduction

1040-0012 Revision Q 8

F January 2018

Updated description of StartupJob in the Control Config file.

Removed obsolete AxisDACRange and ServoConfig settings in the
Control Config file.

Added HeadOffset property

RequestFixedDataList → getFixedDataList to match the implementation

Fixed COM port numbering to match the hardware labeling

Added startup error codes to LastError broadcast parameter description

Added description of extended MotfEnable modes for continuus
tracking

Fixed <set id='XY2AddressMode'> syntax

Added pixel data description to RasterLine

Fixed syntax error in GetCalFactors priority message

Added <set id=’SMCInsGenMode’>

Added <GSBusDisable>

G June 2018

Fixed typo in CalibrateJumpTime

Changed valid range of offset values of RemoteAPI
“SetPerformanceGlobals” command to be 24 bits.

H Feb 2019

Added description of new Remote API command syntax

Added ScanScript Remote API commands

Added SyncFileSystem, StartLogging, StopLogging & PowerScale priority
messages

Added LissajousWobble, WobbleTable commands, and Wobble
direction

Introduction

1040-0012 Revision Q 9

J January 2020

Removed RasterModes 2 & 3 and optimize option: unsupported modes

Added access to both MOTF frequency values in GetRegisters

Updated error code tables

Message event code tables clarified

Added explanation of laser types 100 and greater in the laser config file

Added clarifying description about the value of the MOTF count register

Added EnableZCompensation and SyncMasterEnabled to ControlConfig
file

Added WaitUntilGalvoCmdDelayComp to JumpAndDrillList

Added GalvoCmdMarker command

Added MotfTriggerEvent command

Remote API Admin and User PIN commands 500, 501, 512, 513 are
obsoleted

Remote API commands Take/Release Host Control (2 & 3) are
unobsoleted and clarified as to effect

K July 2020
Updated error code tables

Added HeadTransform command

L March 2021
Added L3_INPOS signal to WaitForIO and CurrentDIO register bits

Added Polygon Raster section

M February 2022

Added priority message “WriteDigital” which was missed in V3.0 doc
update

Raster line pixel definition updated to reflect single-bit-per-pixel packing

Corrected value range of LongDelay

Reformatted document

N September 2022 Added user data file management methods

Introduction

1040-0012 Revision Q 10

P April 2023

Added LaserModType note about difference from the EC1000

Added GalvoAxisConfig to Control Config file and job command list

Cleaned up some table formatting

Added EnableLogging to the RemoteAPI

Removed “Reserved” form Interlock priority messages

Added definition of HeadInterfaceType tag in Broadcast Status

Updated definition of ServoStatus tag in GetRegisters data

Deprecated use of JumpAndFireList for VHD applications

Q March 2024

Corrected WaitForIO pin list: Swap START and AUX_START

GetRegisters command added to the Remote API

ServoConfig tag description is updated

2.3 WARRANTY INFORMATION

The Customer shall examine each shipment within 10 days of receipt and inform Novanta of any

shortage or damage. If no discrepancies are reported, the shipment will be considered as delivered

complete and defect-free. Novanta warranties products against defects up to 1 year from manufacture

date, barring unauthorized modifications or misuse. Repaired product is warrantied for 90 days after

the repair is made, or one year after manufacture date - whichever is longer.

Contact Customer Service at +1-781-266-5800 to obtain a Return Materials Authorization (RMA)

number before returning any product for repair.

All orders are subject to the Terms and Conditions and Limited Warranty. Contact your local sales office

for the latest version of these documents and other useful information.

Customers assume all responsibility for maintaining a laser-safe working environment. OEM customers

must assume all responsibility for CDRH (Center for Devices and Radiological Health) certification.

SMC Product introduction

1040-0012 Revision Q 11

3 SMC PRODUCT INTRODUCTION

3.1 SYSTEM DESCRIPTION

SMC is a self-contained controller that provides advanced hardware and software control technology

to drive laser scanning systems. The Ethernet-connected SMC board is designed to permit remote

embedding and control of a scan-head and laser system. It is capable of controlling two scan-heads

with up to three motion axes each with concurrent laser timing control. It also provides integrated

synchronization I/O for connection to factory automation equipment.

Connection to a PC for job download and administrative control is made via Ethernet® network using

industry standard TCP/IP protocols. In addition to Ethernet connectivity, the SMC provides external

USB connections to support job file distribution via industry standard USB Flash drives. RS232 and

RS485 Serial I/O is also provided for laser control, external automation control, and diagnostic access.

In a typical installation, the SMC is a “smart controller” device, which can be installed remotely in a

laser scanning system. Positioning vectors are organized as packets which represent an entire job, or

sequential parts of a job. These packets are then sent from a networked PC to the SMC for local

processing. The SMC sequentially processes these vectors in real-time and sends them to the laser

steering galvo servos as digital signals. Alternatively, the job packets can be saved to FLASH memory

on the SMC and the loaded for execution from there.

There is no requirement to dedicate a full-time host PC to a laser scanning system, as the SMC can

process vectors while the PC is used for other purposes. In fact, one PC can support multiple SMC-

based scanning systems with no loss in performance. This is due to the large amount of buffer memory

available on the controller, the use of a separate supervisory processor on the controller to handle

network communication processing, and the complete off-loading of time-critical tasks to a second

real-time processor on the SMC.

Direct cabling for scan-head communication to the SMC is possible for both XY2-100-based heads and

Cambridge Technology LightningTM II heads. Laser interfacing is done through a standard 0.1” 50-pin

IDC ribbon-style connector to laser personality cards or cables that present laser-specific connections.

SMC Product introduction

1040-0012 Revision Q 12

Direct connection is also possible with sparsely populated pin-in-shell-style connectors. The laser

signals are organized such that an IPG YLP fiber laser with type E interface can be directly connected

using a ribbon cable.

I/O signals for automation are presented in a 0.1” 20-pin header for easy access. All I/O signals are

also presented in an inter-board transition connector that can be direct connected to an expansion I/O

board. This arrangement permits alternate connector usage and additional signal conditioning options.

3.2 FEATURE OVERVIEW

3.2.1 HARDWARE FEATURES

• Tethered and stand-alone operation for "embedded" installation in scanning equipment

• Dual processor architecture with integrated 100/1000BaseT Ethernet communication capability

• Real-time processing engine for precise, synchronized scanner movement and laser control

• Direct 24-bit GSBus interface to Cambridge Technology LightningTM II digital galvo systems

• Standard support of the 16-bit XY2-100 protocol for non-LightningTM II heads

• Dual scan-head control via the XY2-100 or GSBus interface

• Software-selectable polarity and timing of six TTL laser control signals

• Two auxiliary analog output channels (12-Bit) 0-10V for control of laser current or pulse intensity

• One 8-Bit TTL digital output port for laser power control

• Four 24V-compatible general purpose digital outputs

• Four 24V-compatible general purpose optically isolated digital inputs

• Seven 24V-compatible dedicated outputs and optically isolated inputs for system control and

external equipment synchronization

• One USB socket and one USB header for portable flash disk access

• 3GBytes of on-board Micro SD card flash for storage of firmware, local jobs, and parameters

• 300MB RAM for downloadable job data storage

• One RS232 serial port for console and smart-display use

• One RS232 serial port for general purpose use

SMC Product introduction

1040-0012 Revision Q 13

• One RS232 serial port for laser control (included in the laser connector)

• One RS485 serial port for smart-controller motion control

• Two quadrature encoder inputs for Mark-on-the-fly use

3.2.2 SOFTWARE FEATURES

The SMC is designed with a client-server architectural model. The SMC implements all required server

code functions including the broadcast of identification and status information, vector packet handling,

command and control communications, and real-time positioning operations. Host-to-SMC

communications uses TCP/IP as a transport mechanism over Ethernet.

To simplify integration with third-party application software, a Microsoft Windows-compatible

Application Programming Interface (API) is provided. Two API formats are supported: .NET and Win32

DLL. The APIs take care of all network connection requirements, and they abstract many of the discrete

functions of the module into higher-level vector-oriented instructions.

While this document describes the low-level EC1000 compatible XML API, the recommended interface

for new application development for the SMC is Cambridge Technology’s high-level ScanMaster API.

This API provides a high-level hardware abstraction, graphical file importing and advanced shape

rendering. In addition to these features, the ScanMaster API permits access to ScanScript, the powerful

embedded scripting language feature that enables flexible automation integration and local rendering

of bar codes, text, and various other shapes. This capability is very useful in structuring custom

applications that require real-time rendering of serial numbers and data-codes as in some mark-on-

the-fly situation.

In addition to the programming interface DLLs, example code and administrative management tools

are provided to facilitate setup, configuration, and calibration.

3.3 APPLICATION PROGRAMMING INTERFACE

The host software Application Programming Interface (API) is implemented in Microsoft's C# language

and is exposed as Windows .NET assemblies and as COM objects. It is also accessible via a bridge DLL

that provides Win32-style access without the complexity of COM. These interfaces permit access from

any suitable Microsoft Windows platform programming language such as Visual Basic, C++, C#, etc.

SMC Product introduction

1040-0012 Revision Q 14

The DLLs and .tlb files that make up the COM interface are automatically installed and registered in

the Window Registry by a setup installation program on the software distribution CD. Unmanaged

(non-.NET) programming languages such as C++ can access the DLLs through:

• COM objects that are imported into the IDE through the use of the COM object browser

• Traditional Win32 style wrapper DLLs

The COM interfaces are identified as ICti.Broadcast and ICti.Session. In languages based on Microsoft

.NET technology, the interfaces are available as assemblies that can be referenced within a project.

For backward compatibility with applications developed for the EC1000, DLLs with interfaces defined

as ILecSession and ILecBroadcast are also provided however these interfaces are not recommended

for continued use.

Example code that illustrates the use of the API is contained in the SDK installer and is loaded on the

computer during API installation. The code examples are in a set of subdirectories in the Sample

Programs directory where the API software is installed. The DLLs making up this API can also be used

to control EC1000 platforms with firmware version 2.8.0 and above.

3.3.1 INSTALLATION LOCATION

The DLLs, libraries and header files that make up the API are installed in subdirectories of the

following location on the installation drive (typically the C drive):

C:\Program Files (x86)\Cambridge Technology\SMC\Client \Redistributables

If the 64-bit installer is chosen, then the path will be:

C:\Program Files\Cambridge Technology\SMC\Client \Redistributables

The subdirectories Bin, Lib, and Include contain the actual files used by an application. The DLL

names and their functions are defined in the following table.

Table 2 - SMC API DLLS

DLL name Function

Cti.Broadcast.dll, Cti.Broadcast.tlb Contains the .NET and COM Broadcast API entry points.

Cti.Session.dll, Cti.Session.tlb Contains the .NET and COM Session API entry points.

Cti.CommonLib.dll

Cti.FTPClient.dll
Contains support functions for the API. Required for use.

SMC Product introduction

1040-0012 Revision Q 15

DLL name Function

Cti.Session.Win32.dll,
Cti.Session.Win32.lib,
CTISessionWin32.h

Cti.Broadcast.Win32.dll,
Cti.Broadcast.Win32.lib,
CTIBroadcastWin32.h,

SMCEventCodes.h

Contains Win32/C++ compatible entry points to the
Broadcast and Session DLLs. These interfaces are non-
class based and use an optional device index argument to
specify a controller in a multi-controller system.

Cti.Session.Win32Cls.dll,
Cti.Session.Win32Cls.lib,
CTISessionWin32Cls.h

Cti.Broadcast.Win32Cls.dll,
Cti.Broadcast.Win32Cls.lib,
CTIBroadcastWin32Cls.h

SMCEventCodes.h

Contains Win32/C++ compatible entry points to the
Broadcast and Session DLLs. These interfaces are class-
based and more closely match the underlying .NET
interfaces. These interfaces support and unlimited
number of controller connections.

Cti.TelnetClient.dll
Utility functions to support Telnet access to the SMC.
Private to Cambridge Technology. Used by the firmware
updater utility.

Cti.ECUtils.dll,

CtiECUtilsWin32.h,

Cti.ECUtilsCls.dll,

CtiECUtilsWin32Cls.h

Utility functions used by the demo programs. Not
necessary for normal use but contains useful functions
for all applications. Source code for this DLL is provided
as part of the sample programs.

3.3.2 API STRUCTURE

The API is divided into three components:

1. The Broadcast API, which is used to identify and examine the status of SMCs on the network

2. The Session API, which is used to transfer configuration and job data to and from a selected

controller for real-time processing

3. The Remote Control API, which is used to provide simple ASCII character-string-level control

of an SMC that has been conditioned to run locally stored marking jobs.

For convenience, the API is defined using .NET C# syntax. All functions return unsigned integer codes

to indicate the success or failure of the operations. These codes are defined in Table 37 - API Error

Codes on page 317.

SMC Product introduction

1040-0012 Revision Q 16

The API makes extensive use of XML to pass parameters between a client application and the DLLs.

This technique dramatically reduces the number of interface methods required to control an SMC

module. The following sections explicitly define the XML interface requirements.

Sample programs illustrating the use of the API are located in the C:\Program Files

(x86)\CTI\SMC\Client\Sample Programs directory.

3.3.3 WIN32 C++ INTERFACES

The XML API DLLs are written using Microsoft .NET technology. Two wrapper DLLs are provided to

facilitate interfacing to main DLLs from unmanaged software development environments. These DLLs

handle the data marshalling between the environments and can be called directly from a C++ or other

unmanaged code development environments.

The interfaces are defined in the header files CTISessionWin32Cls.h and CTIBroadcastWin32Cls.h

contained in the \Client\Redistributables\Include directory. Where possible, the method names and

arguments are preserved intact so correlating the documentation in this manual with the method

names should be straight-forward. In cases where multiple method overloads are provided in the .NET

DLL, the alternate interface is differentiated with a suffix “2” at the end of the method name.

Migrating EC1000 Win32 Applications

An older deprecated C++ method interface is also provided for backwards compatibility to EC1000

based applications. This set of interfaces is not class-based and uses a device index parameter to

differentiate multiple controller targets. If only a single SMC is used, then there is no need to supply

the index number as it will default to zero.

These older interfaces have been repackaged into two separate DLLs with different DLL names from

the EC1000 equivalent. The DLLs, link libraries and header files can be found as follows:

EC1000 SMC

\Client\EC1000Win32.dll \Client\Redistributables\Bin\Cti.Session.Win32.dll

\Client\Redistributables\Bin\Cti.Broadcast.Win32.dll

\Client\EC1000Win32.lib \Client\Redistributables\Lib\Cti.Session.Win32.lib

\Client\Redistributables\Lib\Cti.Broadcast.Win32.lib

\Client\EC1000Win32.h \Client\Redistributables\Include\CtiSessionWin32.h

SMC Product introduction

1040-0012 Revision Q 17

\Client\Redistributables\ Include
\CtiBroadcastWin32.h

The application code should be recompiled using the new header files, libraries, and DLLs. Ultimately,

all the DLLs in the \Client\Redistributables\Bin directory should be copied to the customer application

folder.

In the EC1000Win32.dll, there are a few undocumented utility functions that are used in some of the

demo applications:

GetLocalIPAddress(…), ReadFromXMLFile(…), ReadFromXML(…) and DisplayErr(…)

These interfaces and others are exposed in a new DLL: Cti.ECUtils.Win32.dll. If the application requires

these interfaces, the DLL, associated link-library and header files can be found as:

\Client\Redistributables\Bin\Cti.ECUtils.Win32.dll

\Client\Redistributables\Lib\Cti.ECUtils.Win32.lib

\Client\Redistributables\Include\CtiECUtilsWin32.h

Software Overview

1040-0012 Revision Q 18

4 SOFTWARE OVERVIEW

The SMC controls a laser system's galvanometers, accurately positioning deflection mirrors in

synchronization with laser control signals. The sequence of motions, the speed of operation, the

power that the laser uses, and the synchronization with external equipment is expressed in scanning

jobs. These jobs consist of sequences of instructions to the marking engine located on the SMC module.

Some instructions configure the module in such ways as setting up to emit laser control signals with

the appropriate timing relative to the commanded motion of the laser steering galvos. The bulk of the

instructions, however, are sequences of mark and jump instructions, which describe when and where

to move the galvos and when to gate the laser control signals relative to those motions.

Job data is typically prepared using editor applications designed for that purpose. These applications

may be custom software applications written by an OEM integrator, or one of several commercially

available packages. Cambridge Technology’s ScanMaster Designer is an example of such an

application. These applications are hosted on a Microsoft WindowsTM-based PC and interface to the

SMC modules through the API DLLs. The DLLs take care of establishing and maintaining

communications with an SMC and provide a managed conduit for passing data to and from the

controller. The following flowchart illustrates this arrangement.

Figure 1 - CLIENT-SERVER ARCHITECTURE

Software Overview

1040-0012 Revision Q 19

The SMC contains a fully integrated processor and operating system capable of high-level

communications with a supervisory host workstation using TCP/IP protocols. It can also operate in a

fully independent stand-alone mode executing stored jobs. The control software of the SMC is stored

in Flash memory on the module.

In a networked application, the SMC firmware boots upon system power-up and periodically

broadcasts identification information on the network. Application software on a host that links with

the SMC API software can accept and process these broadcast messages. The broadcast messages

contain data that identifies the serial number, friendly name, and IP address of the SMC. This data, in

turn is used to establish session communication channels to the controller. The following figure

illustrates this relationship.

Figure 2 - SMC SOFTWARE DATA FLOW

A communications session permits the transmission of job data to the SMC and the reception of job-

generated messages. Jobs are streamed to the SMC with multiple levels of buffering to guarantee full

marking performance without CPU load-dependent timing anomalies. Two additional channels of

communications are provided to permit asynchronous job aborts, job pausing and resuming, and

message propagation back to the application.

The system also supports the concept of fixed configuration data (i.e., data that defines the

configuration of the scan-head and surrounding electronics). Examples of such data are lens correction

tables, laser interface signal polarities, lens field size, focal length, and calibration values, etc. This data

can be set by a system integrator and stored in Flash memory on the SMC.

Software Overview

1040-0012 Revision Q 20

There are 2 forms of SMC API. One for use with C#, and the other for C/C++. The DLLs, header files

and libraries are contained in the Cambridge Technology\SMC\Client\Redistributables folder and

should be copied to an appropriate place in the customer’s application development directory

structure

4.1 THE USE OF XML IN THE API

The API uses XML syntax for setting laser timing and scanner parameters, and for specifying motion

vector sequences at any desired speed. XML is a standard text-based specification language used in

many internet applications to represent data in a portable manner. Documentation on XML is available

from many on-line sources.

Job commands and configuration data elements can take multiple arguments to specify their function.

In addition, data may be numeric of several different types or text strings. Depending on the

command, parameters may be passed as XML attributes or as tag values. Lists of values are separated

using a comma (“,”) or semi-colon (“;”). Where lists of floating-point values are passed, the semi-colon

separator is preferred to avoid problems with internationalization of the comma character as a decimal

place specifier. The following table shows a few samples of how XML is used in the API. Example data

is shown in bold font.

Table 3 - SAMPLE XML STATEMENTS

XML Statement Meaning

<set id='JumpDelay'>200</set>

The “set” command is used to specify
parameters that modify the behavior of a job
when it is run.

<MarkAbsEx>1000; 2000; 300</MarkAbsEx>

Draw a marking vector from the current
position to the target location specified. The
coordinate units can be bits (default) or in user
units of mm, inch, or mils provided that the
bits/mm calibration factors are made known to
the API.

<JumpAbsEx>1.25; 15.5; 0.3</JumpAbsEx>

Jump from the current position to the target
location specified in floating point numbers
(could be ms, inch or mils units). Note the use
of the semi-colon separator.

Software Overview

1040-0012 Revision Q 21

<LaserStandby laser='1' width='10'
period='200' />

Set the standby laser modulation
characteristics for the LASER_MOD1 output to
a pulse width of 10 laser timing ticks with a
period of 200 laser timing ticks. This attribute
style notation is used in the configuration files.

<set id='LaserStandby'>1; 10; 200</set>
Equivalent to the previous example except this
is the form used in a job.

Details of these statements and all others are contained in the following sections.

Broadcast API

1040-0012 Revision Q 22

5 BROADCAST API

The Broadcast API is a set of methods that allow a client application to identify SMC controllers on the

network and to get relevant information about those controllers. On a configurable periodic basis, the

SMC modules broadcast identification packets to the network. The API captures broadcast messages

from all available SMC controllers and makes this information available to the client. This information

is used by the client to establish a communication session with a target controller. Sessions are used

to send job data to a controller and to send/receive module configuration data. The methods used in

sessions are described in Section 6 Session API.

The methods of the Broadcast API return an unsigned integer as an error code. To interpret the error

codes, refer to Table 37 - API Error Codes on page 317.

5.1 ESTABLISHING A CONNECTION

To use the broadcast facility, a connection must be made to the Broadcast API using the following

methods.

5.1.1 clientAttachBroadcast

Purpose Establishes a connection to receive broadcast messages

Syntax

C# uint clientAttachBroadcast (

string strMulticastAddress,
string strLocalAddress,
int iLocalPortNumber,
ref int piClientId)

C++ uint clientAttachBroadcast (

const char *
strMulticastAddress,
const char * strLocalAddress,
int iLocalPortNumber,
int & piClientId)

Broadcast API

1040-0012 Revision Q 23

Arguments

strMulticastAddress
IP address to which the SMC devices are
broadcasting over (224.168.100.2 – set in the
Admin Config file on the SMC)

strLocalAddress
IP address of the host PC’s network adaptor that
is connected to the SMC modules.

iLocalPortNumber
Port number to which the SMC devices are
broadcasting over (11000 – set in the Admin
Config file on the SMC)

piClientId
This is an id that is used in calls to other
broadcast methods.

Comments

This method is used by a client application to establish a connection to the
broadcast mechanism of the SMC. Once connected, a client may receive
broadcast messages from all SMC modules on the network. The messages
contain information about the broadcasting module including the name,
internet IP address, and other relevant data. This data is retrieved through
the use of getBroadcastData.

strMulticastAddress and strLocalPortNumber are values that are defined
in the Administration Configuration file. For more information on the
Administration Configuration file, refer to Section 6.3.1 (“Administration
Configuration”) on page 45.

strLocalAddress is required to differentiate which network adaptor is
connected to the SMC. The source code for a sample utility function to get
this information from the Windows operating system is provided in the
Sample Programs directory.

 See also clientAttachBroadcast, getServerCount, getServerList, getBroadcastData

5.1.2 clientDetachBroadcast

Purpose Terminates the connection to the broadcast mechanism

Syntax
C# uint clientDetachBroadcast(int iClientId)

C++ uint clientDetachBroadcast(int iClientId)

Arguments iClientId Identifier of the connection made by the application

Broadcast API

1040-0012 Revision Q 24

Comments
This method is used by a client application to terminate a connection to
the broadcast mechanism of the SMC.

See also clientAttachBroadcast

5.2 RETRIEVING BROADCAST DATA

Several methods are provided to get information about network-attached SMC modules.

5.2.1 getServerCount

Purpose Gets embedded controller device data

Syntax

C# uint getServerCount(
int iClientId,
out int piServerCount)

C++ uint getServerCount(
int iClientId,
int & piServerCount)

Arguments

iClientId Identifier of the connection made by the application

piServerCount The number of SMC devices that were identified

Comments

Once a connection to the broadcast mechanism has been established,
broadcast messages are then received, and a table of available modules
is built by the API.

This method returns the number of distinct SMC modules that have
transmitted valid broadcast packets since the clientAttachBroadcast
method was called.

Because of the asynchronous and periodic nature of the broadcast
transmissions, it may take some time before all SMC controllers are
recognized and reported via this method. Several successive calls may
yield different results until enough time has passed to account for the
longest broadcast interval. The broadcast interval is configured in the
Administration Configuration file. It can be changed by using the
requestFixedData method to retrieve it and the sendFixedData method
to update the stored copy.

See also
clientAttachBroadcast, clientDetachBroadcast, getServerList,
getBroadcastData

Broadcast API

1040-0012 Revision Q 25

5.2.2 getServerList

Purpose Gets embedded controller device data

Syntax

C# uint getServerList(
int iClientId,
out int piServerCount,
out string pstrDeviceList)

C++ uint getServerList(
int iClientId,
int & piServerCount,
const char * & pstrDeviceList)

Arguments

iClientId Identifier of the connection made by the application

piServerCount The number of SMC devices that were identified

pstrDeviceList
The names of the SMC devices that were identified.
The string returned contains an XML representation
of the data.

Comments

This method returns a list of identifiers for the SMC modules for which
valid broadcast packets have been received. One of the friendly names
can used in the method getBroadcastData to obtain more extensive
identification data.

Because of the asynchronous and periodic nature of the broadcast
transmissions, it may take some time before all SMC controllers are
recognized and reported via this method. Several successive calls may
yield different results until enough time has passed to account for the
longest broadcast interval. The broadcast interval is configured in the
Administration Configuration file. It can be changed by using the
requestFixedData method to retrieve it and the sendFixedData method
to update the stored copy.

The friendly name list contains an XML representation of the data. For
example:

 <DeviceList>
 <Device name='SMC_Alpha' ip='192.168.42.30'
mac='00:50:C2:4F:A0:01'/>
 <Device name='SMC_Beta' ip='192.168.42.31'
mac='00:50:C2:4F:A0:06'/>
 </DeviceList>

See also
clientAttachBroadcast, clientDetachBroadcast, getServerCount,
getBroadcastData

Broadcast API

1040-0012 Revision Q 26

5.2.3 getBroadcastData

Purpose Gets embedded controller device data

Syntax

C# uint getBroadcastData(

int iClientId,
string strFriendlyName,
int iDataType,
out string pstrData)

C++ uint getBroadcastData(

int iClientId,
const char * strFriendlyName,
int iDataType,
const char * & pstrData)

Arguments

iClientId
Identifier of the connection made by the
application

strFriendlyName Name of the SMC device

iDataType
The type of SMC device data (see Section 5.3
(“Broadcast Data Definitions”) on page 27)

pstrData
The data requested from the SMC device. The
string returned contains an XML representation
of the data requested by piDataType.

Comments
This function is used by a client application to retrieve various types of
data related to the specified SMC module. This data is defined in the
Data Types section.

See also
clientAttachBroadcast, clientDetachBroadcast, getServerCount,
getServerList

Broadcast API

1040-0012 Revision Q 27

5.3 BROADCAST DATA DEFINITIONS

Both the Broadcast and Session APIs use a data type code. See the following table (“Broadcast Data

Types”) to specify the data that the application is requesting or sending. This is the iDataType argument

in the methods getBroadcastData, requestFixedData, and sendFixedData. All data types support an

XML representation of the data.

Table 4 - BROADCAST DATA TYPES

Broadcast Data Type iDataType Value Code

System Information 0x01

Status Information 0x07

In the following data description tables, example data is shown in bold font. Although in XML all data

is expressed as text, the actual data type interpretation is application dependent. For the SMC, all data

has an expected type interpretation, thus the tables contain a column that indicates the data type that

is intended for the particular data element. The data types are identified in the following table (“Data

Type Keys”).

Table 5 - DATA TYPE KEYS

Type Identifier Type Description Range

STR ASCII String <= 256 characters

U16 Unsigned 16-bit Integer 0 <-> 65535

I16 Signed 16-bit Integer -32768 <-> +32767

U32 Unsigned 32-bit Integer 0 <-> 4,294,967,295

I32 Signed 32-bit Integer -2,147,483,648 <-> 2,147,483,647

FLT Floating point IEEE 32-bit Floating Point range

BOOL Boolean true, false

HEX Unsigned 32-bit integer 0x00000000 <-> 0xFFFFFFFF

Broadcast API

1040-0012 Revision Q 28

All the data retrievable using the getBroadcastData method is read-only.

5.3.1 BROADCASTED SYSTEM INFORMATION

The broadcasted system information data contains device, hardware, and connection information.

Note: This data defines the basic characteristics of the controller, especially as required to properly

communicate with the controller. It contains a combination of live dynamic data and static data that

is stored on the Flash memory of the device. All data is read-only.

See also getBroadcastData.

Table 6 - BROADCASTED SYSTEM INFORMATION

XML Tag Type Description/XML Example

Data N/A XML Example: <Data type='SysInfoData' rev='1.0'>

MSN STR Unique board manufacturing code

XML Example: <MSN>SMC-14497864</MSN>

PVer STR Version of the SMC platform operating system software

XML Example: <PVer>Petalinux v2</PVer>

AVer STR Version of the SMC server firmware

XML Example: <AVer>2.3.24.14566</AVer>

ObjExtVer STR Version of the SMC ScanScript engine firmware

XML Example: <ObjExtVer>2.3.24.14566</ObjExtVer>

FPGAFirmVer STR Version of the FPGA firmware that is loaded

XML Example: <FPGAFirmVer>330180118</FPGAFirmVer>

StateCode U32 Connection status of SMC. Refer to the State Code table for a
description of each state code.

XML Example: <StateCode>1</StateCode>

Broadcast API

1040-0012 Revision Q 29

XML Tag Type Description/XML Example

LastError I32 Last system error. For instance, 9001 represents a recent abort
operation had completed. In the case of a faulty start-up of the SMC
due to corrupted configuration files, this code represents the file
type that has problems. If corruption is discovered, the SMC uses
backup default configuration files in order to boot properly. See
Table 39 - LastError Code Descriptions in page 321.

XML Example: <LastError>0</LastError>

FreeTempStorage U32 The amount of free storage in non-persistent memory in Kilo Bytes

XML Example: <FreeTempStorage>359174</FreeTempStorage>

PermStoragePath STR The path to the root of persistent memory

XML Example: <PermStoragePath>mnt</PermStoragePath>

FreePermStorage U32 (Reserved for future use) The amount of free storage in persistent
memory in Kbytes

XML Example: <FreePermStorage>3200000</FreePermStorage>

FreeUSBStorage U32 (Reserved for future use) The amount of free storage in Kbytes on
the USB Flash device (if the USB Flash device is connected)

XML Example: <FreeUSBStorage>1002200</FreeUSBStorage>

MAC STR Hardware address

XML Example: <MAC>00:1e:c0:98:a0:af</MAC>

NetMask STR Network mask used by SMC. This value is either manually set, or it is
provided by a DHCP or DNS server.

XML Example: <NetMask>255.255.255.0</NetMask>

NetAssign I32 Network assignment can be manual, provided by DHCP, or provided
by DNS

XML Example: <NetAssign>1</NetAssign>

IP STR IP address used by SMC. This value is either manually set, or
provided by a DHCP or DNS server. This IP address is used in the
loginSession method to connect to a specific SMC.

XML Example: <IP>192.168.100.20</IP>

Broadcast API

1040-0012 Revision Q 30

XML Tag Type Description/XML Example

ConnectIP STR The client IP address that is currently connected to the SMC

XML Example: <ConnectIP>192.168.100.1</ConnectIP>

FriendlyName STR Name used by the SMC. If the SMC has trouble booting up and
needs to resort to using the backup configuration files (see
LastError), the FriendlyName will be preceded with “BACKUP_”

XML Example: <FriendlyName>SMC_Alpha</FriendlyName>

ConnectJob STR The job name that is currently marking

XML Example: <ConnectJob>Hubble</ConnectJob>

Port U32 The network port currently in use by the Job Session

XML Example: <Port>12200</Port>

HSN STR (Reserved for future use) Marking head serial number.

XML Example: <HSN>HEAD-0000023</HSN>

Data N/A End SysInfoData

XML Example: </Data>

The following table contains a description of each state code for the SMC controller. The state code is

included in the broadcasted system information. Refer to Table 6 - Broadcasted System Information

(above) for more information on the broadcasted system information.

Table 7 - STATE CODE DESCRIPTIONS

State Value Description

Available 0 Available for connection

ClientTCP 1 Connected to network client

ClientSerial 2 Connected to serial client

ClientLocal 4 In local mode

Restarting 8 Server restarting

Broadcast API

1040-0012 Revision Q 31

State Value Description

Waiting 16 Waiting for server startup

Pausing 32 Job paused

WaitingTCP 64 Waiting for TCP connection

NotAvailable 128 Server is in a transitional state and unavailable

Error 256 Unrecoverable error state

NotFound 512 Expected resource not found

FPGAError 1024 Unrecoverable FPGA error

The following table contains a description of each error code that may be set by the SMC controller.

The error code is included in the broadcasted system information as the LastError tag value. Refer to

Table 6 - Broadcasted System Information (above) for more information on the broadcasted system

information.

5.3.2 BROADCASTED STATUS INFORMATION

The broadcasted status includes the information in the following table, as maintained by the marking

engine.

Note: The information in the following table represents the live status of the device. All data is read-

only.

See also getBroadcastData.

Broadcast API

1040-0012 Revision Q 32

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

Data N/A StatInfoData identifier

XML Example: <Data type='StatInfoData' rev='1.1'>

XPosAck BOOL Boolean passed from the X-axis galvo servo controller indicating
that the servo is "settled" at the commanded position. This
information is derived from the XY2-100 status return, bit
position. Note that this feature is not supported by all galvo
controllers.

XML Example: <XPosAck>true</XPosAck>

YPosAck BOOL Boolean passed from the Y-axis galvo servo controller indicating
that the servo is "settled" at the commanded position. Note
that this feature is not supported by all galvo controllers.

XML Example: <YPosAck>true</YPosAck>

XPos I32 The value of the current ideal commanded X position prior to
lens correction.

XML Example: <XPos>-2489</XPos>

YPos I32 The value of the current ideal commanded Y position prior to
lens correction

XML Example: <YPos>5510</YPos>

XActPos I32 The value of the actual X position after lens correction

XML Example: <XActPos>-2489</XActPos>

YActPos I32 The value of the actual Y position after lens correction

XML Example: <YActPos>5510</YActPos>

XTemp BOOL This value is true if the X galvo servo indicates an over-
temperature condition in the XY2-100 status word. Note that
this feature is not supported by all galvo controllers.

XML Example: <XTemp>false</XTemp>

Broadcast API

1040-0012 Revision Q 33

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

YTemp BOOL This value is true if the Y galvo servo indicates an over-
temperature condition in the XY2-100 status word. Note that
this feature is not supported by all galvo controllers.

XML Example: <YTemp>false</YTemp>

ContrlTemp I16 The value of the temperature in Celsius of the SMC

XML Example: <ContrlTemp>32</ContrlTemp>

XStatus HEX Inverted high-byte from the XY2-100 status return. Note that
this value is galvo servo-controller specific.

XML Example: <XStatus>0x31</XStatus>

YStatus HEX Inverted low-byte from the XY2-100 status return. Note that
this value is galvo servo-controller specific.

XML Example: <YStatus>0x31</YStatus>

XPower BOOL This value is true if any of the bits in the XStatus register are
asserted. Note that this value is galvo servo-controller specific

XML Example: <XPower>true</XPower>

YPower BOOL This value is true if any of the bits in the YStatus register are
asserted. Note that this value is galvo servo-controller specific.

XML Example: <YPower>true</YPower>

Interlock HEX This number represents a bitmask that encodes the current
state of the system interlock switches. A "1" in the bit position
means that the interlock has been opened in that position.
Bits[3..0] represent the state of the signals INTERLOCK[4..1].

XML Example: <Interlock>0x4</Interlock>

Broadcast API

1040-0012 Revision Q 34

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

CurrentDIO HEX This number represents a bitmask that encodes the current
state of the system digital I/O lines:

bits[3..0] == AUX_GPI[4..1]_ISO

bit[5..4] == AUX_START_ISO, START

bits[9..6] == INTERLOCK[4..1] → {LASER_STAT2,
LASER_STAT1, LASER_STAT0, ABORT}

bits[13..10] == AUX_GPO[4..1]

bits[17..14] == JOBACTIVE, ERROR/NREADY, BUSY,
LASING

bits[24..18] == LASER_STAT[6..0]

bit[25] == XY2_INPOS

bit[26] == AUX_XY2_INPOS

bit[27] == L3_INPOS

XML Example: <CurrentDIO>0x1023</CurrentDIO>

JobMarker U16 (Obsolete) This number is a copy of the current job marker data
register that can be set by an application job via the JobMarker
instruction.

XML Example: <Jobmarker>35</JobMarker>

HeadInterfaceType U16 This indicates what type of scan head interface is active on the
SMC, i.e. which interface type has valid status data.

0 == No scan heads detected

1 == XY2-100

2 == GSBus (Lightning-II)

3 == NVL-100

4 == SL2-100

XML Example: < HeadInterfaceType >2</ HeadInterfaceType >

Broadcast API

1040-0012 Revision Q 35

Table 8 - BROADCASTED STATUS INFORMATION

XML Tag Type Description/XML Example

JobDataCntr U32 This number is a copy of the current job data counter. This
counter is cleared whenever the marking engine encounters a
<BeginJob> command. This counter represents the number of
32-bit data elements that the marking engine has processed
since the last time this value was reset.

XML Example: <JobDataCntr>32336</JobDataCntr>

Data N/A End StatInfoData

XML Example: </Data>

Session API

1040-0012 Revision Q 36

6 SESSION API

Once all SMCs are identified using the Broadcast API, individual controllers may be selected for

subsequent communication. The Session API provides the methods to connect to a target SMC, to get

and set configuration data, to send job data, and to manage asynchronous communications events

generated by the controller. Concurrent access to multiple SMCs on a network is supported by

creating multiple SMC session objects and separately logging into each one. Only one host application

at a time can be logged into an SMC.

The methods of the Session API return an unsigned integer as an error code. refer to Table 37 - API

Error Codes on page 317.

6.1 ACCESS TO SMC MODULES

6.1.1 loginSession

Purpose Connects to an SMC device by establishing a session

Syntax

C#

uint loginSession(string strLocalAddress,
string strRemoteAddress,
int iRemotePortNumber,
string strUsername,
string strPassword,
uint uiTimeout)

C++

uint loginSession(const char * strLocalAddress,
const char * strRemoteAddress,
int iRemotePortNumber,
const char * strUsername,
const char * strPassword,
uint uiTimeout)

Session API

1040-0012 Revision Q 37

Arguments

strLocalAddress IP address of the local network adaptor that
is connected to the SMC modules

strRemoteAddress TCP/IP Address of the SMC to login. This is
the "ip" attribute of the SMC selected by
the application and identified in the
getServerList data

iRemotePortNumber Network Port on the SMC supporting the
session. This is the <Port> value of the
SysInfoData returned from the
getBroadcastData call for the selected SMC.

strUsername (Reserved for future use)

strPassword (Reserved for future use)

uiTimeout Duration for attempting call in seconds

Comments

Once SMC modules have been identified via the use of Broadcast API,
a communications session can be opened between the client and a
selected target SMC. Sessions are established via a call to this method.
Multiple sessions to different target SMC controllers are made by
instantiating separate Session objects. A target SMC controller may
only serve one client session at a time.

strLocalAddress is required to differentiate which network adaptor is
connected to the SMC. The source code for a sample utility function to
get this information from the Windows operating system is provided
in the Sample Programs directory.

See also
logoutSession, requestFixedData, sendFixedData, sendStreamData,
sendPriorityData

Session API

1040-0012 Revision Q 38

6.1.2 logoutSession

Purpose Disconnects an SMC device session

Syntax
C# uint logoutSession(uint uiTimeout)

C++ uint logoutSession(uint uiTimeout)

Arguments uiTimeout Duration for attempting call in seconds

Comments

When session communication is completed, the client closes the
session via a call to this method. Once the session is closed, another
new session may be opened to the same or other SMC devices via a
call to loginSession.

Note that if a job was streamed out to the SMC and was still executing
when the logout was invoked, the job will be immediately aborted.

See also loginSession

6.2 CONFIGURATION DATA MANAGEMENT

The SMC has the ability to store a large amount of data in non-volatile Flash memory. This data can

be configuration data or job data. Configuration data is classified as "fixed" data (i.e. it has a lifetime

that spans boot-up cycles of the controller). Some of the configuration data is set at the factory and is

considered permanent read-only information. Other data is used by the controller at boot-up to

properly initialize the hardware interfaces, and still other data is provided for the convenience of the

application programmer to indicate the capabilities of the integrated system. All configuration data is

defined in Section 6.3 (Configuration Data Definitions).

Several XML data files make up the configuration data in a hierarchical relationship as shown in the

following figure:

Session API

1040-0012 Revision Q 39

AdminConfig.xml

...

 <ControlFile>ControlConfig.xml</ControlFile>

...

ControlConfig.xml

…

 <CorrFile1>10mmF160YAG_Main</CorrFile1>

 <CorrFile2>10mmF160YAG_Pointer</CorrFile2>

 <CorrFile3>10mmF160YAG_Main</CorrFile3>

 <CorrFile4>10mmF160YAG_Pointer</CorrFile4>

 <LaserFile>IPG YLP 20W</LaserFile>

 <LensFile>10mmF160</LensFile>

 <UserFile>AlignAdjustments</UserFile>

 <PerformanceFile>PerfAdjustments</PerformanceFile>

 <ServoFile>ServoParams</ServoFile>

 <VectorFile>ScanPackConfigGeneric</VectorFile>

 ...

10mmF160YAG_Main.xml

Repeat like CorrFile1

IPG YLP 20W.xml

10mmF160.xml

AlignAdjustments.xml

PerfAdjustments.xml
Sample file name assignments

ServoParams.xml

ScanPackConfigGeneric.xml

Figure 3 - SMC CONFIGURATION FILE RELATIONSHIPS

6.2.1 getFixedDataList

Purpose Retrieves a list of the configuration files stored on the SMC

Syntax

C#
uint getFixedDataList(out string pstrData

int uiTimeout)

C++
uint getFixedDataList(const char * & pstrData

int uiTimeout)

Arguments
pstrData Requested data

uiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision Q 40

Comments

The returned string is in XML format. For example:

 <FixedDataList rev='1.0'>

 <FixedDataType id='AdminData'>

 <File>AdminConfig.xml</File>

 </FixedDataType>

 <FixedDataType id='ControlConfigData'>

 <File>ControlConfig.xml</File>

 </FixedDataType>

 <FixedDataType id='LaserConfigData'>

 <File>LaserGeneric.xml</File>

 <File>SPI G3-HS-20.xml</File>

 <File>SYNRAD CO2.xml</File>

 </FixedDataType>

 <FixedDataType id='LensConfigData'>

 <File>LensGeneric.xml</File>

 <File>Lens_50mm_Co2_300mm_CF216.xml</File>

 </FixedDataType>

 <FixedDataType id='CorrTableData'>

 <File>50mm_Co2_300mm_CF216.xml</File>

 <File>PointerFinal_CF180_ZCF160.xml</File>

 </FixedDataType>

 <FixedDataType id='UserCofigData'>

 <File>UserGeneric.xml</File>

 </FixedDataType>

 <FixedDataType id='PerformanceMatrixData'>

 <File>GlobalConfigGeneric.xml</File>

 </FixedDataType>

 </FixedDataList>

See also requestFixedData, sendFixedData

Session API

1040-0012 Revision Q 41

6.2.2 requestFixedData

Purpose Retrieves fixed data from an SMC device session

Syntax

C#

uint requestFixedData(int iDataType
string strStorageName
out string pstrData
uint uiTimeout)

C++

uint requestFixedData(int iDataType
const char *
strStorageName
const char * & pstrData
uint uiTimeout)

Arguments

iDataType Identifier of the requesting data. See Table 9 -
Fixed Data Type Codes on page 43.

strStorageName File name of the data file. The file path is
constructed by the API as follows:

<PermStoragePath>/SMC/Config/<pstrStorageNa
me>.xml

where <PermStoragePath> is defined in the
SysInfoData for the selected SMC and
pstrStorageName is the name of the selected
fixed data file as stored on the SMC without the
".xml" extension.

pstrData Requested data

uiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision Q 42

Comments

SMC modules are autonomous devices that contain information that
configures the module at boot-up for the particular hardware
arrangement of the marking head. This information defines such things
as the laser interface, the lens characteristics, and the optical system
correction tables. An application can access this information by
specifying the data type using the piDataType argument and providing
a file name for the data as stored on the SMC. The information is
returned as an XML string which must be decoded by the application.
The XML specification for the different data types is defined in Section
6.3 (“Configuration Data Definitions”) on page 43.

The AdminConfig.xml data file (see Administration Configuration)
contains the element definition ControlFile naming the master SMC
configuration file. Within this file are element definitions naming the
currently active lens, laser, correction table, and user definitions files.
These names are typically used as the pstrStorageName argument
above, although other files may be accessed on the SMC file system if
those file names are known and the files are of the proper type.

See also getFixedDataList, sendFixedData

6.2.3 sendFixedData

Purpose Sends fixed data to an SMC device for storage

Syntax

C#
uint sendFixedData(string strData

string strStorageName
uint uiTimeout

C++
uint sendFixedData(const char * strData

const char * strStorageName
uint uiTimeout

Arguments
strData The data sent to the SMC device. The string supplied

contains an XML representation of the data.

Session API

1040-0012 Revision Q 43

strStorageName File name of the data file. The file path is constructed by
the API as follows:

<PermStoragePath>\SMC\Config\<pstrStorageName>.xml

where PermStoragePath is defined in the SysInfoData for the
selected SMC and pstrStorageName is the name of the
selected fixed data file as stored on the SMC without the
".xml" extension.

uiTimeout Duration for attempting call in seconds

Comments

• Data retrieved via the requestFixedData method may be modified and passed
back to the controller for local storage. That data will then be
immediately used and also the next time the module is booted.

• An application should wait for the application message event
"FixedDataProcessed" to be assured the updated data has been processed
by the SMC and is ready for subsequent actions.

See also requestFixedData, getFixedDataList

6.3 CONFIGURATION DATA DEFINITIONS

The Session API uses a data type code to specify the data that the application is requesting or sending.

This is the piDataType argument in the methods requestFixedData and sendFixedData. All data types

support an XML representation of the data.

Table 9 - FIXED DATA TYPE CODES

Fixed Data Type Data ID

Controller Configuration 0x05

Laser Configuration 0x06

Lens Configuration 0x02

Correction Table 0x0D

User Configuration 0x0F

Session API

1040-0012 Revision Q 44

Table 9 - FIXED DATA TYPE CODES

Fixed Data Type Data ID

Performance Adjustments 0x10

Admin Configuration 0x0A

Servo Parameters 0x20

ScanPack Configuration 0x21

In the following data description tables, example data is shown in bold font. Although in XML all data

is expressed as text, the actual data type interpretation is application-dependent. For the SMC, all data

has an expected type interpretation, thus the tables contain a column that indicates the data type that

is intended for the particular data element. The data types are identified in Table 5 - Data Type Keys

on page 27.

All data that can be retrieved with the requestFixedData method is changeable with the sendFixedData

method. This powerful interface permits full configurability of the SMC. Most of the elements in the

data tables are set by a system integrator to provide information for a marking application programmer

to configure the user-interface and control interfaces as a function of the controller/system hardware

configuration. This data is not intended to be changed after it has been set by an integrator.

In addition to the integrator data, there is a table of data that is intended to be set by a system

administrator. This data can be adapted at the end-customer site to meet specific networking

requirements. This data is also intended to be read-only from a marking application perspective.

Some of the properties defined in the configuration data tables are provided as a convenience to the

application programmer in adapting the software for various target configurations. These properties

are shown first in the tables and identified with the heading “Host application initialization settings.”

The properties are ignored by the controller at boot-up.

The other data in the tables identified with the heading “Hardware initialization settings” are used by

the controller at boot-up to configure the laser control signals and other hardware features.

All of the configuration data is persistent on the controller and changeable via the API.

Session API

1040-0012 Revision Q 45

6.3.1 ADMINISTRATION CONFIGURATION

Administration Configuration data defines the base behavior of the module. Most of the items defined

here are used to configure the network parameters and diagnostic tracing of the server software. The

ControlFile tag defines the name of the controller configuration file which contains pointers to other

files that define the configuration of the module.

The administration configuration describes configurable properties of the SMC device related to

system administration.

These properties control how the SMC identifies itself and how it records tracing information about

network transactions. All of these properties are used by the controller at boot-up.

See also requestFixedData and sendFixedData.

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Data N/A Begin AdminData file type data

<Data type='AdminData' rev='3.0'>

DataChannel N/A Begin the Data Channel specification section

 <DataChannel>

Port U32 The TCP/IP port number used to pass job and fixed data to and
from the SMC

XML Example: <Port>12200</Port>

ControlFile STR File name of the controller config data

XML Example: <ControlFile>ControlConfig.xml</ControlFile>

EnableStreamToFile BOOL If True, streaming job data is sent to the <LogFile>. Used only
for system debugging.

XML Example:
<EnableStreamToFile>False</EnableStreamToFile>

StreamFile STR Name of a file that will capture data streamed to the device.
Used only for system debugging.

XML Example: <StreamFile>LogFile.txt</StreamFile>

Session API

1040-0012 Revision Q 46

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

DataChannel N/A End of the Data Channel section

 </DataChannel>

PriorityChannel N/A Begin the Priority Channel specification section

 <PriorityChannel>

Port U32 The TCP/IP port number used to pass priority command data
to the SMC

XML Example: <Port>12201</Port>

PriorityChannel N/A End of the Priority Channel section

 </PriorityChannel>

EventChannel N/A Begin the Event Channel specification section

 <EventChannel>

Port U32 The TCP/IP port number used to pass event data from the SMC
back to the host

XML Example: <Port>12202</Port>

EventChannel N/A End of the Event Channel section

 </EventChannel>

AliveChannel N/A Begin the Alive Channel specification section

 <AliveChannel>

Port U32 The TCP/IP port number used to pass heart-beat information
between the SMC and the host

XML Example: <Port>12203</Port>

AliveChannel N/A End of the Alive Channel section

 </AliveChannel>

BroadcastChannel N/A Begin the Broadast Channel specification section

 <BroadcastChannel>

Session API

1040-0012 Revision Q 47

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Address STR IP address used for broadcast messages

XML Example: <Address>224.168.100.2</Address>

Port U32 The port number used for broadcast messages

XML Example: <Port>11000</Port>

Retransmit U32 Broadcast period for the SysInfoData packet (sec)

XML Example: <Retransmit type='SysInfoData' time='2'/>

Retransmit U32 Broadcast period for the StatInfoData packet (sec)

XML Example: <Retransmit type='StatInfoData' time='2'/>

BroadcastChannel N/A End of the Broadcast Channel section

 </BroadcastChannel>

Settings N/A Begin the miscellaneous configuration settings section. Note
that the COM port assignments below must not be duplicated
and must be in the range of COM0 to COM3

 <Settings>

FriendlyName STR The friendly name given this system

XML Example: <FriendlyName>SMC_Alpha</FriendlyName>

HeadSerialNumber STR Serial number of the head assigned by the OEM

XML Example:
<HeadSerialNumber>XYZ</HeadSerialNumber>

LocalMode BOOL The controller is to operate in local stand-alone mode on
power-up. Pendant interactions are required to enable
network operations.

XML Example: <LocalMode>false</LocalMode>

BreakOK BOOL (Reserved for future use)

XML Example: <BreakOK>false</BreakOK>

Session API

1040-0012 Revision Q 48

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Client STR Selects the primary interface for accepting control
information. Valid clients are:

 LANStream LAN-based streaming job control

 LAN LAN-based remote control

 RS232 RS232-based remote control

XML Example: <Client>LANStream</Client>

Pendant STR (Reserved for future use).

XML Example: <Pendant></Pendant>

PendantPort STR (Reserved for future use). Selects the COM port used for the
pendant.

XML Example: <PendantPort>COM1</PendantPort>

PendantPortSpeed U32 (Reserved for future use). Baud rate for the pendant COM
port.

XML Example: <PendantPortSpeed>38400</
PendantPortSpeed>

APIPort STR Selects the COM port used for remote API access. If the port is
not specified, then no serial remote API support is available.

XML Example: <APIPort>COM2</APIPort>

APIPortSpeed U32 Baud rate for the API COM port

XML Example: <APIPortSpeed>38400</APIPortSpeed>

MotionPort STR (Reserved for future use). Selects the COM port used for
external motion control access. If the port is not specified,
then no serial motion control is available.

XML Example: <MotionPort>None </MotionPort>

MotionPortSpeed U32 (Reserved for future use). Baud rate for the motion control
COM port

XML Example:
<MotionPortSpeed>38400</MotionPortSpeed>

Session API

1040-0012 Revision Q 49

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

LaserPort STR Selects the COM port used for laser communication. If the
port is not specified, then no serial laser control is available.

XML Example: <LaserPort>COM3</LaserPort>

LaserPortSpeed U32 Baud rate for the laser COM port

XML Example: <LaserPortSpeed>38400</LaserPortSpeed>

DFMPort STR (Reserved for future use). Selects the COM port used for
changing the position of the Dynamic Focusing Module in scan-
heads equipped with this option. If the port is not specified,
then no positioning control is available.

XML Example: <DFMPort>None</DFMPort>

DFMPortSpeed U32 (Reserved for future use). Baud rate for the DFM positioner
COM port

XML Example: <DFMPortSpeed>9600</DFMPortSpeed>

DebugPort STR (Reserved for future use). If assigned to a free COM port, the
firmware will print debug trace messages on that port. If the
port is not specified, then no debug messages are available.

XML Example: <DebugPort>None</DebugPort>

DebugPortSpeed U32 (Reserved for future use). Baud rate for the software debug
COM port

XML Example: <DebugPortSpeed>38400</DebugPortSpeed>

User STR (Reserved for future use). Password for accessing user-level
pendant functions: six numeric characters only.

XML Example: <User>123456</User>

Admin STR (Reserved for future use). Password for accessing
administrator-level pendant functions: six numeric characters
only.

XML Example: <Admin>654321</Admin>

Session API

1040-0012 Revision Q 50

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

LoggingLevel U32 (Reserved for future use). Level of transaction logging to
perform; used only for system debugging.

XML Example: <LoggingLevel>0</LoggingLevel>

IPMode STR Defines the behavior of the TCP/IP system. Values are:

Static Use the IP Address, Subnet, and Gateway values below

Autodetect IP information comes from a DHCP server

XML Example: <IPMode>Static</IPMode>

IPAddress STR Use this IP Address if IPMode is set to Static

XML Example: <IPAddress>192.168.100.20</IPAddress>

IPSubnet STR Use this IP Subnet mask if IPMode is set to Static

XML Example: <IPSubnet>255.255.255.0</IPSubnet>

IPGateway STR Use this IP Gateway address if IPMode is set to Static

XML Example: <IPGateway>192.168.100.1</IPGateway>

IPTimeout U32 If IPMode is Autodetect, the server will wait this long in
seconds for an address to be assigned by a DHCP server. If
IPRetries has reached the specified limit, the static default IP
Address 192.168.100.20 will be used.

XML Example: <IPTimeout>10</IPTimeout>

IPRetries U32 Numer of time to query the DHCP server for an IP address
before giving up.

XML Example: <IPRetries>3</IPRetries>

IPTryagain U32 Numer of time to query the DHCP server for an IP address
before giving up.

XML Example: <IPTryagain>20</IPTryagain>

Settings N/A End Settings

 </Settings>

Session API

1040-0012 Revision Q 51

Table 10 - ADMINISTRATION CONFIGURATION DATA

XML Tag Type Description/XML Example

Data N/A End AdminData

</Data>

6.3.2 CONTROLLER CONFIGURATION

The Controller Configuration file is the master control file for defining the startup configuration of the

controller. It contains pointers to other configuration files that deal with specific elements of the

system such laser timing, correction tables, lens identification, user adjustments, etc. The file names

referenced in the table are XML file names with the .xml extension suppressed. The files are in the

/<PermStoragePath>/SMC/Config directory on the SMC. <PermStoragePath> is the value reported in

the broadcasted SystemData packets.

The values in the Controller Configuration file are normally set by the integrator and are not intended

to be altered by a marking application.

Note: When the Controller Configuration is sent to the SMC, the correction table and laser

configurations referenced are also applied to the controller. Detailed MOTF operation is controlled

through instructions passed as part of the job stream and is not a "mode" of the controller.

See also requestFixedData and sendFixedData.

Controller Configuration Data

The Following table contains the setting for the Controller Configuration file.

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

Data N/A Begin Controller Configuration file data

<Data type='ControlConfigData' rev='3.2'>

MotfCapable BOOL (Reserved for future use). System is Mark-On-The-Fly (MOTF) capable
(true).

Session API

1040-0012 Revision Q 52

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

XML Example: <MotfCapable>true</MotfCapable>

MotfCalGain FLT (Reserved for future use). MOTF digital gain factor; used as a fine-
tuning scalar adjustment of MotfCalFactor.

XML Example: <MotfCalGain>1.0</MotfCalGain>

CorrFile1 STR The name of correction table 1 file

XML Example: <CorrFile1>CORRTAB1</CorrFile1>

CorrFile2 STR The name of correction table 2 file

XML Example: <CorrFile2>CORRTAB2</CorrFile2>

CorrFile3 STR The name of correction table 3 file

XML Example: <CorrFile3>CORRTAB3</CorrFile3>

CorrFile4 STR The name of correction table 4 file

XML Example: <CorrFile4>CORRTAB4</CorrFile4>

LensFile STR The name of the lens configuration file

XML Example: <LensFile>LENSFILE2</LensFile>

LaserFile STR The name of the laser configuration file

XML Example: <LaserFile>LASERFILE4</LaserFile>

UserFile STR The name of the user configuration file

XML Example: <UserFile>MYCONFIGFILE</UserFile>

PerformanceFile STR The name of the performance adjustments file

XML Example: <PerformanceFile>PADJUST</PerformanceFile>

ServoFile STR The name of the file that contains parameters of the galvo/servo
system attached to the SMC. Used in adjusting the dynamic behavior
of the embedded ScanPack algorithms to match the galvo/servo
capability.

XML Example: <ServoFile>ServoParams</ServoFile>

VectorFile STR The name of the file that contains default shape parameters for the
embedded ScanPack algorithms.

Session API

1040-0012 Revision Q 53

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

XML Example: <VectorFile>ScanPackConfigGeneric</VectorFile>

PolygonFile STR Name of the file that contains polygon scan head configuration data

XML Example: < PolygonFile >PolytekIIConfig</ PolygonFile >

MotionFile STR Name of the file that contains configuration data the SMC step-and-
direction control ports.

XML Example: < MotionFile >MotionConfig</ MotionFile >

MotfEncoderCal FLT Default MOTF calibration factor. Relates the encoder counts to laser
positioning bits (bits/count).

XML Example: < MotfEncoderCal >24.23</ MotfEncoderCal >

MotfMode U16 Default MOTF operational mode:

 0 - Use encoder

 1 - Simulate encoder

XML Example: <MotfMode>0</MotfMode>

MotfDirection I16 Default MOTF orientation and direction in degrees:

 0 - left to right in the X-axis

 90 - bottom to top in the Y-axis

 180 - right to left in the X-axis

 270 - Top to bottom in the Y-axis

XML Example: <MotfDirection>0</MotfDirection>

LaserPipelineDelay U16 The time in laser timing ticks that all laser signals are delayed relative
to micro-vector generation. This is used to compensate for the
inherent delay in servo modules from when a command is applied to
when the galvos actually respond. Units are micro-seconds.

XML Example: <LaserPipelineDelay>450</LaserPipelineDelay>

The maximum pipleine delay value is equivalent to 32000 laser ticks so
the specified value maximum will be reduces depending on the
LaserTiming value. For example, if LaserTiming is 50 (1usec resolution)
then the maximum value will be 32msec. If LaserTiming is set to 5
(0.1usec resolution), then the maximum pipeline value is 3.2msec.

CmdRangeCheckMode U16 Command range checking mode:

Session API

1040-0012 Revision Q 54

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

 Enable enable checking if non-zero

 Port digital output port to
manipulate

 Value port value to set if out of
range

The port and value definitions are the same as the WriteDigital
command.

This command is used to assert an I/O output if the galvo command
range is exceeded, usually during MOTF operations.

XML Example:
<CmdRangeCheckMode>1;3;1</CmdRangeCheckMode>

IntlockConfig HEX Interlock configuration control. In the SMC, the internal Interlock
signals are an aggregate of the external signals {LASER_STAT2,
LASER_STAT1, LASER_STAT0, and ABORT}

There are two fields in the argument:

Polarity

Bits[3..0] represent the interlock signals
INTLOCK[4..1].
A "1" corresponds to no current flowing through the
interlock optical isolator. This condition is the
interlock open state.

Enable

Bits[11..8] represent the interlock signals
INTLOCK[4..1].
A "1" enables a transition of the interlock signal going
from the unasserted to the asserted state to generate
an "Interlock" exception and shut down an active job
provided that bit 12 is also asserted.

Bit[12] is the master enable bit for the interlock
function. If this bit is set, then all enabled interlock
signals should be de-asserted at power-up time or
else an immediate "Interlock" exception will be
generated when this parameter is processed. All of
the Enable bits can also be manipulated using the
SetInterlockEnable priority data message.

Session API

1040-0012 Revision Q 55

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

If an interlock that is enabled is tripped, the condition that caused the
trip must be cleared and an "Abort" priority message sent before a job
can be restarted without generating another "Interlock" exception.

The current state of the interlock physical signals can be seen in the
Broadcast Status data as element Interlock.

XML Example: <IntlockConfig>0x1707</IntlockConfig>

XY2StatusTiming STR Defines the timing of the decoding of the XY2-100 status line. Early
timing means that the data is clocked on the rising edge of the clock,
Late timing means that the data is clocked on the falling edge of the
clock.

XML Example: < XY2StatusTiming >Early</XY2StatusTiming >

XY2AddressingMode STR Defines the command data width of the XY2-100 interface. Normal is
traditional 16-bit command data. Enhanced is 20-bit command data
used with Cambridge Technology Lightning-II galvos with an XY2-100
interface.

XML Example: <XY2AddressingMode>Normal</XY2AddressingMode>

XY2FrameRate STR Defines the update rate of the XY2-100 digital interface in KHz. If this
value is changed, not all XY2-100 based scan heads may respond
properly.

XML Example: <XY2FrameRate>100</XY2FrameRate>

InsGenMode STR Defines the command generation mode of operation of the SMC.
Values are:

Traditional -- Generate galvos command waveforms in the traditional
Mark/Jump mode along with the appropriate delays.

ScanPack – Generate galvo commands using Cambridge Technology’s
proprietary ScanPack algorithms

XML Example: <InsGenMode>ScanPack</InsGenMode>

MicroStepMode STR If InsGenMode is set to Traditional, this defines how the calculated
micro-step values are delivered to the output stage. Values are:

ISR – Output rate timing is governed by the Mark/Jump speed
command update rate value which is regulated using a timed interrupt
service routine if ISRGenMode is set to Program.

Session API

1040-0012 Revision Q 56

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

Free – Output values are calculated as quickly as possible and placed in
an output FIFO for consumption at a rate govered by the XY2-100 or
GSBus frame sync.

XML Example: <MicroStepMode>ISR</MicroStepMode>

ISRGenMode STR If MicroStepMode is set to ISR, this defines the rate the micro-step
values are delivered to the output stage. Values are:

Program – Output rate timing is governed by the Mark/Jump speed
command update rate value.

FrameSync – Output values are calculated and consumed at a rate
govered by the XY2-100 or GSBus frame sync. Factory recommended.

XML Example: <ISRGenMode>FrameSync</ISRGenMode>

RTCCompatibility BOOL If True, the X axis output of the Correction table calculation is
delivered to the Y Galvo axis, and the Y output value is delivered ot the
X Galvo axis. This results in a 90 degree coordinate system rotation in
the counter-clockwise direction which makes it compatible with
Scanlab’s RTC and scan-head conventions.

XML Example: <RTCCompatibility>True</RTCCompatibility>

InitPosition U16 Commands the galvos to jump to the position specified. This
command is executed before StartupJob is processed. If this command
is not present, then a jump to 0,0,0 will be done.

XML Example: <InitPosition> 30000; 30000; 0</InitPosition>

StartupJob STR Name of a locally stored job to run after the controller boots up. Jobs
can be Rev 1.0 style (.wlb), Rev 2.0 style (.job), or ScanMaster style
(.lsj)

XML Example: <StartupJob>HWInit.job</StartupJob>

NOTE: .lsj style jobs that have human-interaction commands should
not be used as a startup job as host-based dialog-box support will not
necessarily be present.

ExtPauseControl STR This permits the specification of a set of external digital inputs that can
cause the SMC to pause vector processing. Multiple pins along with a
polarity setting may be specified which are evaluated in a logical OR
configuration.

Session API

1040-0012 Revision Q 57

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

XML Example:

 <ExtPauseControl>

 <Config pin="1" state="0" />

 </ExtPauseControl>

Pin numbering corresponds to the follow table:

0 START

4-1 GPI[4-1]_ISO

5 AUX_START_ISO

6 ABORT

13-7 LASER_STAT[6-0]

31-16 AUX_DIN[15-0]

DigitalIOPolarity HEX The polarity of digital inputs and outputs can be changed in sub-groups
as needed to make the XML and ScanScript job commands reflect a
more natural signal control scheme. Setting the bit inverts the natural
polarity of the signal. For optically isolated inputs, the natural state is
asserted if open. For outputs, the signal naturally goes low if asserted.
Both situations can be referred to as using negative logic.

XML Example: DigitalIOPolarity>0x7f1f</DigitalIOPolarity>

Bit position assignments are in the following table:

0 AUX_ABORT

1 START

2 AUX_START_ISO

3 AUX_GPI[4-1]_ISO

4 EXT_AUX_GPI[15-0]

8 AUX_BUSY

9 AUX_READY

10 AUX_LASING

11 AUX_JOBACTIVE

12 LASER_STAT[6-0]

13 AUX_GPO[4-1]

14 EXT_AUX_GPO[15-0]

Session API

1040-0012 Revision Q 58

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

 SyncMasterEnabled BOOL If true, enables SyncMaster functionality in the SMC. This feature is
further regulated by licensing. Contact Cambridge Technology
technical support for additional requirements

XML Example: <SyncMasterEnabled>true</SyncMasterEnabled>

EnableZCompensation

BOOL If true, geometric compensation is applied to the XY coordinates as Z is
varied in the job data. This keeps the geometry of the marking area
accurate as focus is adjusted to mark on 3D objects. Proper behavior
of this compensation depends on accurate geometry being specified in
the lens correction table file.

If false, no geometric compensations are applied which results in a de-
focused spot as Z is varied in the job data.

XML Example:

< EnableZCompensation >false</ EnableZCompensation >

GalvoAxisConfig HEX This value permits the flipping and swapping of axes for each scan
head independently. The value is divided into two 4-bit fields, one for
each head according to the following table:

Head Bit Function

1 0 Flip X

1 Flip Y

2 Flip Z

3 Swap X & Y

2 4 Flip X

5 Flip Y

6 Flip Z

7 Swap X & Y

XML Example:

<GalvoAxisConfig>0x88</GalvoAxisConfig>

Rotates the scan field by 90 degrees.

Session API

1040-0012 Revision Q 59

Table 11 - CONTROLLER CONFIGURATION DATA

XML Tag Type Description/XML Example

ServoConfig HEX This value defines the active interface type for SMCs configured to use
NVL-100 compatibile firmware. The firmware can be configured to
activate either NVL-100, XY2-100 or SL2-100 protocol on the SMC J11
connector.

Value Interface

0 NVL-100

1 XY2-100

2 SL2-100

XML Example:

<ServoConfig>0x1</ServoConfig>

Data N/A End Controller Configuration file Data

</Data>

6.3.3 LASER CONFIGURATION

The Laser Configuration file defines the properties of the laser being used with the SMC.

The values in the Controller Configuration file are normally set by the integrator and are not intended

to be altered by a marking application.

See also requestFixedData and sendFixedData.

Laser Configuration Data: Header and Host Application Initialization Settings

Table 12 - LASER CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Data N/A Laser Configuration file identifier and revision

<Data type='LaserConfigData' rev='3.1'>

Session API

1040-0012 Revision Q 60

Table 12 - LASER CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LsrName STR The name of the laser

XML Example: <LsrName>IPC002</LsrName>

LsrType U16 Application definable value to identify a laser type. Laser type
values of 100 or greater are intended for use with pulse-width
modulation lasers such as CO2 lasers. With these lasers, the
pulse width duty cycle will be scaled according to the laser
correction table.

XML Example: <LsrType>1</LsrType>

FixedFreq BOOL Laser is only capable of a fixed frequency setting (true) or
capable of variable frequency settings (false)

XML Example: <FixedFreq>true</FixedFreq>

FixedPW BOOL Laser is only capable of a fixed pulse width setting (true) or
capable of variable pulse width settings (false)

XML Example: <FixedPW>true</FixedPW>

FixedWatts BOOL Laser is only capable of a fixed output power setting (true) or
capable of variable output power settings (false)

XML Example: <FixedWatts>true</FixedWatts>

WattsUnits BOOL Laser power units are in Watts (true) or % duty-cycle (false)

XML Example: <WattsUnits>true</WattsUnits>

Pulse U16 Pulse width range supported by the laser (in µsecs)

XML Example: <Pulse min='2' max='65535'/>

Bits U16 Binary value range for lasers with digital power control

XML Example: <Bits min='0' max='255'/>

ExtPwrCtrl BOOL Laser power is controllable via an external knob (true)

XML Example: <ExtPwrCtrl>false</ExtPwrCtrl>

UseExtPwrCtrl BOOL Application is configured to use external power control (true)

XML Example: <UseExtPwrCtrl>false</UseExtPwrCtrl>

Session API

1040-0012 Revision Q 61

Table 12 - LASER CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

VisPtr BOOL Laser has a visible pointer integrated into it (true)

XML Example: <VisPtr>false</VisPtr>

Duty U16 Duty cycle range of the laser pulses (%)

XML Example: <Duty min='1' max='90'/>

Freq U16 Pulse frequency range sustainable by the laser (KHz)

XML Example: <Freq min='1' max='250'/>

Watts U16 Wattage range producible by the laser

XML Example: <Watts min='1' max='15'/>

Volts U16 Analog power level voltage range sustainable by the laser; the
SMC is capable of 0-10 Volts output

XML Example: <Volts min='1' max='10'/>

Interlock STR The name of a file on the host platform that contains
instructions on how to clear an interlock break

XML Example: <Interlock>IPCIntlocks.txt</Interlock>

Laser Configuration File: Hardware Initialization Settings

The following tables contain the hardware initialization settings for the Laser Configuration file.

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserModeConfig U16 Set the laser configuration using a bit mask encoded as shown in the
following list. Note that this command will override other commands
that may set individual bits intended for this control word.

Bit Value definitions are provided in the table on the next page.

Name Hex Bit
Value

Definition

Session API

1040-0012 Revision Q 62

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LASER_GATE
polarity

0x0001 0=active high,
1=active low

LASER_POINTER
polarity

0x0002 0=active high,
1=active low

Laser Sync Mode
Bit 0

0x0004 See notes below.

LASER_MOD1
polarity

0x0008 0=active high,
1=active low

LASER_MOD2
polarity

0x0010 0=active high,
1=active low

LASER_MOD3
polarity

0x0020 0=active high,
1=active low

LASER_ENABLE
polarity

0x0040 0=active high,
1=active low

LASER_DOUT
polarity

0x0080 0=active high,
1=active low

Laser activate 0x0100 1=activate (enable) laser
 output signals

Laser Power Port
mode

0x0200 (Obsolete – 7-bit mode is no longer
supported)

Set the mode of the digital
laser power port

0=8-bit mode,
1=7-bit mode (LSB used as strobe)

Session API

1040-0012 Revision Q 63

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LASER_POINTER
configuration

0x0800

&

0x0400

Sets the mode of operation of
LASER_POINTER

0 – LASER_POINTER == NOT LASER_GATE

1 - LASER_POINTER == LASER_GATE &
NOT LasersEnabled

2 - LASER_POINTER == NOT
LasersEnabled

3 - LASER_POINTER ==

Asserted all of the time

Laser Power Port 0x1000 0=8-bit digital power port,
1=analog output A1

LASER_GATE
configuration

0x2000 0=Gating signal,
1=Modulation signal if 8-bit digital
 power port bit 7 is also set

LASER_GATE
inhibit

0x4000 0=normal operation,

1=LASER_GATE is suppressed
 when the laser is turned on but
 the modulation signal is still
 emitted. Use in synchronous
 laser operation during
 JumpAndFireList commands.

Laser Sync Mode
Bit 1

0x8000 See notes below.

XML Example: <LaserModeConfig>0x140</LaserModeConfig>

Session API

1040-0012 Revision Q 64

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Notes on Laser Sync Mode:

Laser Sync Mode bits [1 – 0] encode the laser synchronization mode of
the SMC according to the following table:

0 - Asynchronous modulation. The laser modulation is discontinuous,
switching between the background modulation and the lasing
modulation coincident with the LASER_GATE signal

1 - Synchronous to the modulation signal on LASER_MOD3.
LASER_MOD3 takes its modulation settings from the background
settings for LASER_MOD1. The background signal for LASER_MOD1
and LASER_MOD2 is set for no modulation. In this mode, the
LASER_GATE and subsequent LASER_MOD1 and LASER_MOD2 timing
is synchronized to the rising edge of pulses on LASER_MOD3

2 - Synchronous to the free-running modulation of LASER_MOD2. In
this mode the LASER_GATE signal is synchronized to the falling edge of
LASER_MOD2. Both LASER_MOD1 and LASER_MOD2 are free-running
according to the LaserPulse settings defined for them.

3 - Synchronous to the external signal source received on
LASER_STAT6. In this mode, the LASER_GATE and subsequent
LASER_MOD1 and LASER_MOD2 timing is synchronized to the rising
edge of pulses received on LASER_STAT6.

 LaserTiming U16 The number of 20ns intervals that make up a laser timing "tick"

XML Example: <LaserTiming>50</LaserTiming>

This example produces a timing resolution of 1usec meaning that laser
modulation signals can be specified with a resolution of 1usec. The
minimum LaserTiming value is 1 (20nsec).

LaserEnableDelay U16 The time required (in milliseconds) for enabling the laser prior to actual
use; sets the time that the signal LASER_ENABLE is asserted prior to a
marking operation.

XML Example: <LaserEnableDelay>10</LaserEnableDelay>

Session API

1040-0012 Revision Q 65

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserEnableTimeout U16 The time (in milliseconds) that the signal LASER_ENABLE will remain
asserted after a marking operation. If a subsequent marking operation
is started prior to the expiration of this time, then LASER_ENABLE will
remain asserted and the marking operation will begin immediately
without the cost of another LaserEnableDelay.

XML Example: <LaserEnableTimeout>20</LaserEnableTimeout>

LaserModDelay U16 The time (in µsecs) from the assertion of LASER_GATE to the emission
of laser pulses

XML Example: <LaserModDelay>20</LaserModDelay>

LaserFPK I16 (µsec) Sets the ‘position' of the LASER_MOD3 signal relative to the
LASER_GATE signal, and the ‘width' of the LASER_MOD3 pulse

XML Example: <LaserFPK position='0' width='10'/>

LaserStandby U16 (µsec) Sets the idle or non-lasing state modulation characteristics (pulse
width and period) of the LASER_MOD1 and LASER_MOD2 signals. The
‘period' value must be the same for both lasers

XML Example: <LaserStandby laser='1' width='1' period='200'/>

XML Example: <LaserStandby laser='2' width='1' period='200'/>

LaserPowerDelay U16

The time required (in milliseconds) after laser power is changed until
the laser power has settled. Used when constructing jobs that
manipulate the laser power.

XML Example: <LaserPowerDelay>100</LaserPowerDelay>

InitAnalog U16

Sets initial values for the analog output ports.

XML Example: <InitAnalog port='0' value='50' />

port = 0 is LASER_ANALOG1 and port = 1 is LASER_ANALOG2

value ranges between 0 - 4095

InitDigital U16

Sets initial values for the digital output ports.

XML Example: <InitDigital port='102' value='128' />

port = 102 is the LASER_DATA port

value ranges between 0 - 255

Session API

1040-0012 Revision Q 66

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

InitLaser BOOL

(Reserved for future use). If set, use the settings specified in the tags
InitType, InitStrDelim, InitStrEOL, InitStrings, DeinitStrings, to initialize
the laser using a serial port connection.

XML Example: <InitLaser>false</InitLaser>

InitType U16

(Reserved for future use). Laser communications type: 0 = RS-232
Serial, 1 = Ethernet

XML Example: <InitType>0</InitType>

InitStrDelim CHR

(Reserved for future use). Delimiter character separating command and
argument tokens in the InitString.

XML Example: <InitStrDelim>","</InitStrDelim>

InitStrEOL CHR

(Reserved for future use). Line termination character used by the laser
command interpreter.

XML Example: <InitStrEOL>"\n"</InitStrEOL>

InitStrings STR

(Reserved for future use). A list of initialization strings to be sent to the
laser. The list may be arbitrarily long.

XML Example:

 <InitStrings>

 <InitString>ab</InitString>

 <InitString>cd</InitString>

 <InitString>ef</InitString>

 </InitStrings>

DeinitStrings STR

(Reserved for future use). A list of de-initialization strings to be sent to
the laser. The list may be arbitrarily long.

XML Example:

 <DeinitStrings>

 <DeinitString>zy</DeinitString>

 <DeinitString>xw</DeinitString>

 <DeinitString>vu</DeinitString>

 </DeinitStrings>

Session API

1040-0012 Revision Q 67

Table 13 - HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

CorrTable

A list of laser power linearization values. Laser power has a logical
range of 0-255 and as a power change is requested, the logical power
value is used to index this table and the selected entry is used as the
actual "corrected" value. In the case of laser types 100 and greater, the
values represent a duty-cycle value where the 0 represents 0% duty
cycle and 255 represent 100% duty-cycle.

XML Example:

 <CorrTable>

 <Entry>0</Entry>

 <Entry>1</Entry>

 . . .

 <Entry>255</Entry>

 </CorrTable>

6.3.4 LENS CONFIGURATION

The Lens Configuration file defines the properties of the lens being used with the SMC.

The values in the Lens Configuration file are normally set by the integrator and are not intended to

be altered by a marking application.

See also requestFixedData and sendFixedData.

Lens Configuration Data: Header and Host Application Initialization Settings

The following table contains the header and host application initialization settings for the Lens

Configuration file.

Note: The host application initialization settings are not required or used by the hardware. They are

provided in the following table for the convenience of host application user parameter initialization.

Session API

1040-0012 Revision Q 68

Table 14 - LENS CONFIGURATION DATA: HEADER AND HOST APPLICATION INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Data N/A LensConfigData identifier and revision

<Data type='LensConfigData' rev='3.0'>

LensName STR Used by the head integrator to identify a particular lens model.

XML Example: <LensName>S4LFT0163</LensName>

CalFlag BOOL Used by an application to indicate that this lens can be calibrated.

XML Example: <CalFlag>false</CalFlag>

ZMode U16 Specifies the Z-axis operational mode:

Name Value Description

2D 0 No Z-axis is present in the system and only X and Y
vector

 data is used.

3D 1 Z-axis is present and the Z position is the Z-axis job data

adjusted by the interpolated value from the Z-axis

component of the currently active correction table.

The Z-axis moves smoothly to the target position over
the

same time period it takes to move to the X-Y target
position.

XML Example: <ZMode>0</ZMode>

FocalLen U32 Focal length of the lens (mm)

XML Example: <FocalLen>163</FocalLen>

Aperture U32 Laser beam diameter entering the lens (mm)

XML Example: <Aperture>15</Aperture>

Lens Configuration Data: Hardware Initialization Settings

The following tables contain the hardware initialization settings for the Lens Configuration file.

Session API

1040-0012 Revision Q 69

Note: The Tbl{1,2,3,4} offset, gain and rotation factors are intended to be used by the integrator to

correct for system alignment issues and for the effects of the different wavelengths of light used for

marking (table 1) and pointing (table 2). User-level adjustments to the imaging field are performed

through the use of The User Configuration Table. The order of application of the factors is as follows:

Table 15 - LENS CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Tbl1XOff I32 X-axis offset to be applied to correction table 1 (bits)

XML Example: <Tbl1XOff>0</Tbl1XOff>

Tbl1YOff I32 Y-axis offset to be applied to correction table 1 (bits)

XML Example: <Tbl1YOff>0</Tbl1YOff>

Tbl1XGain FLT X-axis gain to be applied to correction table 1

XML Example: <Tbl1XGain>1.0</Tbl1XGain>

Tbl1YGain FLT Y-axis gain to be applied to correction table 1

XML Example: <Tbl1YGain>1.0</Tbl1YGain>

Tbl1Rotation FLT Field rotation to be applied to correction table 1 (degrees)

XML Example: <Tbl1Rotation>0.0</Tbl1Rotation>

Tbl2XOff I32 X-axis offset to be applied to correction table 2 (bits)

XML Example: <Tbl2XOff>0</Tbl2XOff>

Tbl2YOff I32 Y-axis offset to be applied to correction table 2 (bits)

XML Example: <Tbl2YOff>0</Tbl2YOff>

Tbl2XGain FLT X-axis gain to be applied to correction table 2

XML Example: <Tbl2XGain>1.0</Tbl2XGain>

Tbl2YGain FLT Y-axis gain to be applied to correction table 2

XML Example: <Tbl2YGain>1.0</Tbl2YGain>

Session API

1040-0012 Revision Q 70

Table 15 - LENS CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Tbl2Rotation FLT Field rotation to be applied to correction table 2

XML Example: <Tbl2Rotation>0.0</Tbl2Rotation>

Tbl3XOff I32 X-axis offset to be applied to correction table 3 (bits)

XML Example: <Tbl3XOff>0</Tbl3XOff>

Tbl3YOff I32 Y-axis offset to be applied to correction table 3 (bits)

XML Example: <Tbl3YOff>0</Tbl3YOff>

Tbl3XGain FLT X-axis gain to be applied to correction table 3

XML Example: <Tbl3XGain>1.0</Tbl3XGain>

Tbl3YGain FLT Y-axis gain to be applied to correction table 3

XML Example: <Tbl3YGain>1.0</Tbl3YGain>

Tbl3Rotation FLT Field rotation to be applied to correction table 3

XML Example: <Tbl3Rotation>0.0</Tbl3Rotation>

Tbl4XOff I32 X-axis offset to be applied to correction table 4 (bits)

XML Example: <Tbl4XOff>0</Tbl4XOff>

Tbl4YOff I32 Y-axis offset to be applied to correction table 4 (bits)

XML Example: <Tbl4YOff>0</Tbl4YOff>

Tbl4XGain FLT X-axis gain to be applied to correction table 4

XML Example: <Tbl4XGain>1.0</Tbl4XGain>

Tbl4YGain FLT Y-axis gain to be applied to correction table 4

XML Example: <Tbl4YGain>1.0</Tbl4YGain>

Tbl4Rotation FLT Field rotation to be applied to correction table 4

XML Example: <Tbl4Rotation>0.0</Tbl4Rotation>

Data N/A End LensConfigData

</Data>

Session API

1040-0012 Revision Q 71

6.3.5 CORRECTION TABLES

The correction table contains values to adjust laser location based on the lens distortion and laser

galvo configuration.

Note: Correction table data may be changed by an application, but it is normally not. This data is

usually provided by a marking head integrator using the characteristics of the lens and laser galvo

configuration. Correction table data may also be sent to the SMC using the sendStreamData method.

In this case, however, the data is not persistent and will be lost after session logout or reboot.

See also requestFixedData and sendFixedData.

Correction Table Parametric Information

The following table contains the correction table parametric information, which is used for table

design and manipulation.

Note: The following table contains groups of related parameters in contiguous rows. Each group

begins with and ends with a bolded XML tag (e.g., ReferenceInformation).

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

Data N/A CorrTableData identifier
<Data type='CorrTableData' rev='2.2'>

TableParams N/A Begin TableParams section

 <TableParams>

 ReferenceInformation N/A Begin ReferenceInformation Section

 <ReferenceInformation>

 Description STR Textual description of scan head configuration

XML Example: <Description>ProSeries-1 14mm with
Linos 163mm EFL lens</Description>

 SourceScanHeadID STR Internal Cambridge Technology use

XML Example: <SourceScanHeadID/>

Session API

1040-0012 Revision Q 72

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 SourceLensID STR Internal Cambridge Technology use

XML Example: <SourceLensID/>

 SourceSpacerID STR Internal Cambridge Technology use

XML Example: <SourceSpacerID/>

 TableRevision STR For customer reference

XML Example: <TableRevision>A</TableRevision>

 TableCreationDate STR For customer reference

XML Example: <TableCreationDate>12/31/2012 8:19
PM</TableCreationDate>

 HeadType STR Internal Cambridge Technology use

XML Example: <HeadType>LXP-10</HeadType>

 ReferenceInformation N/A End ReferenceInformation Section

 </ReferenceInformation>

 Configuration N/A Begin Configuration Section

 <Configuration>

 ThirdAxisPresent BOOL If true, this is a three-axis system with dynamic focus

XML Example:
<ThirdAxisPresent>false</ThirdAxisPresent>

 PreserveCalFactors BOOL If true, adjust table contents to preserve CalFactor
values in mmToActuatorSpaceTransform

XML Example:
<PreserveCalFactors>true</PreserveCalFactors>

 CalibrateRectangularField BOOL If true, the field is calibrated as a rectangle

XML Example:
<CalibrateRectangularField>false</CalibrateRectangul
arField>

Session API

1040-0012 Revision Q 73

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

TableDataHasBeenCorrectedFrom
Design

BOOL If true the table contents reflect measurement-based
iterations, not just theoretical content.

XML Example:

<TableDataHasBeenCorrectedFromDesign>true</Tabl
eDataHasBeenCorrectedFromDesign>

 ActuatorUnits STR String enumeration represting the galvo (actuator)
command units:

bits-16: -32768 to 32767 (EC1000 backwards
compatibility)

bits-20: -524288 to 524287 (EC1000 20-bit enhanced
mode backwards compatibility)

bits-24: -8388608 to 8388607 (SMC Standard)

field-fraction: -0.5 to 0.5 (Cambridge Technology UAPI
for the SC500)

radians: galvo mechanical angle in radians (ScanPack
direct)

XML Example:
<ActuatorUnits>bits-24</ActuatorUnits>

 RTCCompatibleFormat BOOL Table data is organized to support RTC Compatibility
mode of the SMC.

XML Example: < RTCCompatibleFormat >false

</RTCCompatibleFormat >

 Configuration N/A End Configuration Section

 </Configuration>

 DesignErrorComponents N/A Begin DesignErrorComponents Section

 <DesignErrorComponents>

 Mirrors BOOL If true, mirror (pincushion) error compensation is/was
calculated and inserted into the table.

XML Example: <Mirrors>true</Mirrors>

Session API

1040-0012 Revision Q 74

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 Lens BOOL If true, lens distortion error compensation is/was
calculated and inserted into the table

XML Example: <Lens>true</Lens>

 DistortionFactor FLT Strength of lens distortion theoretical calculation

XML Example: <DistortionFactor>

-2.0</DistortionFactor>

 PincushionFactor FLT Strength of pincushion theoretical calculation

XML Example: <PincushionFactor>1.0

</PincushionFactor>

 DesignErrorComponents N/A End DesignErrorComponents Section

 </DesignErrorComponents>

 HeadParameters N/A Begin HeadParameters Section.

 <HeadParameters>

 XGalvoMechHalfAngle-deg FLT X-axis mechanical half-angle

XML Example: <XGalvoMechHalfAngle-
deg>11.0</XGalvoMechHalfAngle-deg>

 YGalvoMechHalfAngle-deg FLT Y-axis mechanical half-angle

XML Example: <YGalvoMechHalfAngle-
deg>11.0</YGalvoMechHalfAngle-deg>

 XtoYMirrorDist-mm FLT X - Y mirror face-to-face spacing

XML Example: <XtoYMirrorDist-
mm>35.0</XtoYMirrorDist-mm>

 YMirrorToRefSurfaceDist-
mm

FLT Y mirror to bottom of the head reference surface
distance

XML Example: <YMirrorToRefSurfaceDist-
mm>75.0</YMirrorToRefSurfaceDist-mm>

Session API

1040-0012 Revision Q 75

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

RefSurfaceToWorkSurfaceDist-mm

FLT Bottom of the head reference surface to work surface
distance

XML Example: <RefSurfaceToWorkSurfaceDist-
mm>192.0</RefSurfaceToWorkSurfaceDist- mm>

 LensFocalLength-mm FLT Design focal length of the F-Theta lens if used

XML Example: <LensFocalLength-
mm>163.0</LensFocalLength-mm>

 LensMaxMechHalfAngle-
deg

FLT Maximum mechanical half-angle of lens entrance
pupil. A lens property.

XML Example: <LensMaxMechHalfAngle-
deg>15.0</LensMaxMechHalfAngle-deg>

 XMirrorToObjectiveDist-
mm

FLT Distance from X mirror center to objective in three-
axis systems

XML Example: <XMirrorToObjectiveDist-
mm>225.0</XMirrorToObjectiveDist-mm>

 E1E2Spacing FLT Nominal distance between Objective and DFM lens for
the design working distance/ field-size

XML Example: <E1E2Spacing>65.0</E1E2Spacing>

 ZCalFactorCoeffs N/A Begin ZCalFactorCoeffs Section.

Z Calibration Factor Coefficients used to calculate the
ZCal Factor as a function of
RefSurfaceToWorkSurfaceDist-mm

 <ZCalFactorCoeffs>

 An FLT As many entries as required to properly model the cal
factor

XML Example: <An>2456.34</An>

XML Example: <An>-21.60</An>

 ZCalFactorCoeffs N/A End ZCalFactorCoeffs Section.

 </ZCalFactorCoeffs>

Session API

1040-0012 Revision Q 76

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 e1e2Coeffs N/A Begin e1e2Coeffs Section.

e1e2 spacing coefficients used to calculate the
objective to DFM lens spacing as a function of
RefSurfaceToWorkSurfaceDist-mm.

 <e1e2Coeffs>

 An FLT As many entries as required to properly model the
e1e2 spacing

XML Example: <An>101.306</An>

XML Example: <An>-.4079</An>

 e1e2Coeffs N/A End e1e2Coeffs Section.

 </e1e2Coeffs>

 HeadParameters N/A End HeadParameters Section.

 </HeadParameters>

 mmToActuatorSpaceTransform N/A Begin mmToActuatorSpaceTransform Section.

The data in the section represents a 3-axis transform
that can be used to convert mm units into galvo
command units.

 <mmToActuatorSpaceTransform>

 Xx FLT Represents the conversion factor for the X-Axis in units
of actuator-units per millimeter.

XML Example: <Xx>551.48</Xx>

 Yx FLT (Reserved for future use)

XML Example: <Yx>0</Yx>

 Zx FLT (Reserved for future use)

XML Example: <Zx>0</Zx>

 Dx FLT (Reserved for future use)

XML Example: <Dx>0</Dx>

Session API

1040-0012 Revision Q 77

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 Xy FLT (Reserved for future use)

XML Example: <Xy>0</Xy>

 Yy FLT Represents the conversion factor for the Y-Axis in units
of actuator-units per millimeter.

XML Example: <Yy>551.48</Yy>

 Zy FLT (Reserved for future use)

XML Example: <Zy>0</Zy>

 Dy FLT (Reserved for future use)

XML Example: <Dy>0</Dy>

 Xz FLT (Reserved for future use)

XML Example: <Xz>0</Xz>

 Yz FLT (Reserved for future use)

XML Example: <Yz>0</Yz>

 Zz FLT Represents the conversion factor for the Z-Axis in units
of actuator-units per millimeter.

XML Example: <Zz>1100</Zz>

 Dz FLT (Reserved for future use)

XML Example: <Dz>0</Dz>

 mmToActuatorSpaceTransform N/A End mmToActuatorSpaceTransform section.

 </mmToActuatorSpaceTransform>

 TableStructure

N/A

Begin TableStructure Section.

Defines how to interpret the table data

XML Example: <TableStructure>

 XActuatorMin

FLT

Minimum ideal X actuator table value

XML Example: <XActuatorMin>-
32768</XActuatorMin

Session API

1040-0012 Revision Q 78

Table 16 - CORRECTION TABLE PARAMETRIC INFORMATION

XML Tag Type Description/XML Example

 XActuatorStride

FLT

Spacing between X actuator ideal values

XML Example:
<XActuatorStride>1024</XActuatorStride>

 X-NumCols
I32

Number of columns for the X-axis

XML Example: <X-NumCols>65</X-NumCols>

 YActuatorMin

FLT

Minimum ideal Y actuator table value

XML Example: <YActuatorMin>-
32768</YActuatorMin>

 YActuatorStride

FLT

Spacing between Y actuator ideal values

XML Example:
<YActuatorStride>1024</YActuatorStride>

 Y-NumRows
I32

Number of rows for the Y-axis

XML Example: <Y-NumRows>65</Y-NumRows>

 ZActuatorMin

FLT

Minimum ideal Z actuator table value

XML Example: <ZActuatorMin>-
32768</ZActuatorMin>

 ZActuatorStride

FLT

Spacing between Z actuator ideal values

XML Example:
<ZActuatorStride>1024</ZActuatorStride>

 Z-NumLayers
I32

Number of layers for the Z-axis

XML Example: <Z-NumLayers>1</Z-NumLayers>

 TableStructure
N/A

End TableStructure Section

 </TableStructure>

TableParams N/A End TableParams section

 </TableParams>

Session API

1040-0012 Revision Q 79

Correction Table Hardware Initialization Settings

The following tables contain the actual correction values for the Correction Table. At run-time, the

ideal command value is used to index the table and each value is added to the ideal command to

create a “corrected” command which is delivered to the galvos. Bi-linear interpolation between the

four closest table entries is used to compute corrections when the ideal command does not fall on a

table entry.

Table 17 - CORRECTION TABLE HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

x-axis FLT X-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the X-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant)
traversing X first, to the highest positive coordinate (upper right
Cartesian quadrant).

XML Example: <x-axis>203.01; 195.24; 161.05; …; -174.56; -190.21</x-

axis>

y-axis FLT Y-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the Y-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant)
traversing X first, to the highest positive coordinate (upper right
Cartesian quadrant).

XML Example: <y-axis>337.98; 323.63; 288.23; … ; -288.98; -

323.04</y-axis>

z-axis FLT Z-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the Z-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant)
traversing X first, to the highest positive coordinate (upper right
Cartesian quadrant).

XML Example: <z-axis>2.13; 2.14; 1.08 ;… ; 4.67; 5.32</z-axis>

Session API

1040-0012 Revision Q 80

Table 17 - CORRECTION TABLE HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Supplemental
Layers

N/A Begin SupplementalLayers section.

Additional Correction table layers in support of full 3D correction table
usage (ScanPack)

XML Example: <SupplementalLayers>

Layer N/A Begin Layer section.

Correction table layer data at a specific ZOffset in mm from the Z=0
plane. A positive ZOffset is above the Z-0 plane.

XML Example: <Layer ZOffset='10.0'>

x-axis FLT X-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the X-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant) to the
highest positive coordinate (upper right Cartesian quadrant).

XML Example: <x-axis>203.01; 195.24; 161.05; …; -174.56; -
190.21</x-axis>

y-axis FLT Y-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the Y-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant) to the
highest positive coordinate (upper right Cartesian quadrant).

XML Example: <y-axis>337.98; 323.63; 288.23; …; -288.98; -323.04</y-
axis>

z-axis FLT Z-Axis Correction Data for Z=0 plane

X-NumCols * Y-NumRows comma- or semi-colon-separated floating-
point values in actuator-units defining the Z-axis correction starting in
the lowest negative coordinate (lower left Cartesian quadrant) to the
highest positive coordinate (upper right Cartesian quadrant).

XML Example: <z-axis>2.13; 2.14; 1.08; … ; 4.67; 5.32</z-axis>

Layer N/A End Layer Section

XML Example: </Layer>

Session API

1040-0012 Revision Q 81

Table 17 - CORRECTION TABLE HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

Supplemental
Layers

N/A End SupplementalLayers Section

XML Example: </SupplementalLayers>

Data N/A End CorrTable Data

XML Example: </Data>

6.3.6 USER CONFIGURATION

The data in the User Configuration file is used by the marking application as needed. (The values in

the User Configuration file are completely under the control of a marking application.)

Note: The offset, gain and rotation variables are independent of, and additive to, the equivalent lens

correction table adjustment factor defined in the Lens Configuration file.

Note: The general purpose user variables can be used to store any information that a marking

application wishes to make persistent across reboots of the controller. It is up to the application to

interpret the UserVar data as required.

User Configuration Data: Header and Host Application Initialization

The following table contains the header and host application initialization settings of the User

Configuration file.

Note: In the User Configuration file, the host application initialization settings are optional and are

not used by the hardware.

Table 18 - USER CONFIGURATION DATA SETTINGS: HEADER AND HOST APPLICATION INITIALIZATION

XML Tag Type Description/XML Example

Data N/A UserConfigData identifier

<Data type='UserConfigData' rev='1.0'>

Session API

1040-0012 Revision Q 82

Table 18 - USER CONFIGURATION DATA SETTINGS: HEADER AND HOST APPLICATION INITIALIZATION

XML Tag Type Description/XML Example

UserVar1 ANY General purpose user variable

XML Example: <UserVar1>ABC</UserVar1>

UserVar2 ANY General purpose user variable

XML Example: <UserVar2>123</UserVar2>

UserVar3 ANY General purpose user variable

XML Example: <UserVar3>4.56</UserVar3>

UserVar4 ANY General purpose user variable

XML Example: <UserVar4>true</UserVar4>

UserVar5 ANY General purpose user variable

XML Example: <UserVar5>false</UserVar5>

UserVar6 ANY General purpose user variable

XML Example: <UserVar6>'text'</UserVar6>

User Configuration Data: Hardware Initialization Settings

The following table contains the hardware initialization settings for the User Configuration file.

Note: In the User Configuration file, the hardware initialization settings are required.

Table 19 - USER CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

XOff FLT Offset to be applied to all X-Axis coordinates (bits, or mm if specified in
fractional format)

XML Example: <XOff>0</XOff>

Session API

1040-0012 Revision Q 83

Table 19 - USER CONFIGURATION DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

YOff FLT Offset to be applied to all Y-Axis coordinates (bits, or mm if specified in
fractional format)

XML Example: <YOff>0</YOff>

ZOff FLT Offset to be applied to all Z-Axis coordinates (bits, or mm if specified in
fractional format)

XML Example: <ZOff>0</ZOff>

XGain FLT Gain factor to be applied to all X-axis coordinates

XML Example: <XGain>1.0</XGain>

YGain FLT Gain factor to be applied to all Y-axis coordinates

XML Example: <YGain>1.0</YGain>

Rotation FLT Rotation transformation to be applied to the X-Y field

XML Example: <Rotation>90.0</Rotation>

Data End UserConfigData

</Data>

6.3.7 PERFORMANCE ADJUSTMENTS

The Performance Adjustments file contains values that are used to adjust job parameters while the

job is executing. This is of particular value when jobs are stored locally and adjustments need to be

made to compensate for laser degradation on a particular machine.

Note: The data in the User Configuration file is intended to be used by the marking application as

needed.

See also requestFixedData and sendFixedData.

Session API

1040-0012 Revision Q 84

Performance Adjustments Data Header

The following table contains the Performance Adjustments file header.

Table 20 - PERFORMANCE ADJUSTMENTS DATA HEADER

XML Tag Type Description/XML Example

Data N/A PerformanceMatrixData identifier

<Data type='PerformanceMatrixData' rev='2.0'>

Performance Adjustments Data: Hardware Initialization Settings

The following table contains the hardware initialization settings for the Performance Adjustments

table.

Table 21 - PERFORMANCE ADJUSTMENTS DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

LaserPower FLT Scale factor to be applied to the laser power value specified in the
job

XML Example: <LaserPower>1.0</LaserPower>

PulseWidth FLT Scale factor to be applied to the laser pulse width specified in the
job

XML Example: <PulseWidth>1.0</PulseWidth>

Period FLT Scale factor to be applied to the laser pulse period specified in the
job

XML Example: <Period>1.0</Period>

MarkSpeed FLT Scale factor to be applied to the MarkSpeed specified in the job

XML Example: <MarkSpeed>1.0</MarkSpeed>

XOffset I16 Offset to be applied to all X coordinates (bits, or mm if specified in
fractional format)

XML Example: <XOffset>0</XOffset>

Session API

1040-0012 Revision Q 85

Table 21 - PERFORMANCE ADJUSTMENTS DATA: HARDWARE INITIALIZATION SETTINGS

XML Tag Type Description/XML Example

YOffset I16 Offset to be applied to all Y coordinates (bits, or mm if specified in
fractional format)

XML Example: <YOffset>0</YOffset>

ZOffset I16 Offset to be applied to all Z coordinates (bits, or mm if specified in
fractional format)

XML Example: <ZOffset>0</ZOffset>

Data End PerformanceMatrixData

</Data>

6.3.8 SERVO CONFIGURATION

The Servo Config file contains information about the tuning of the servo/galvo system. This file is

automatically generated for Lightning II galvo systems using the Firmware Loader utility. The

parameters are used by the SMC embedded ScanPack algorithms to model the dynamic behavior of

an attached scan-head.

 The data in the Servo Config file is critical to proper performance of the SMC and should not

be changed unless under the guidance of Cambridge Technology Applications Engineering.

See also requestFixedData and sendFixedData.

Servo Config Data

The following table contains the hardware initialization settings for the Servo Config file. There are

separate sections for each axis of a multi-axis system. This table describes entries for a single axis.

Session API

1040-0012 Revision Q 86

Table 22 - SERVO CONFIG DATA

XML Tag Type Description/XML Example

Data N/A ServoConfigData identifier

<Data type='ServoConfigData' rev='2.0'>

System_Dynamics N/A System_Dynamics section identifier

<System_Dynamics>

SERVO_PARAMS N/A Axis specific SERVO_PARAMS section identifier

 <SERVO_PARAMS>

AxisID STR Axis identifier. Options are “X”, “Y”, and “Z”

XML Example: <AxisID>X</AxisID>

CommandGain FLT Command gain of the servo system in radians/half-field

XML Example: <CommandGain>-0.174</CommandGain>

BandWidthHz FLT The servo/galvo bandwidth in Hz

XML Example: <BandWidthHz>4500.0</BandWidthHz>

Damping FLT Damping factor

XML Example: <Damping>0.8</Damping>

IntegratorBandWid
thHz

FLT Error integrator bandwidth in Hz

XML Example:
<IntegratorBandWidthHz>0.0</IntegratorBandWidthHz>

PositionFF FLT Positoin loop feed-forward factor

XML Example: <PositionFF>1.0</PositionFF>

VelocityFF FLT Velocity loop feed-forward factor

XML Example: <VelocityFF>0.4</VelocityFF>

AccelFF FLT Acceleration loop feed-forward factor

XML Example: <AccelFF>0.0</AccelFF>

FilterTimeSec FLT Roll-off filter time constant in seconds

Session API

1040-0012 Revision Q 87

Table 22 - SERVO CONFIG DATA

XML Tag Type Description/XML Example

XML Example: <FilterTimeSec>8.534e-5</FilterTimeSec>

MaxVelocity FLT Maximum velocity in radians/sec

XML Example: <MaxVelocity>220000.0</MaxVelocity>

MaxAccel FLT Maximum acceleration in radians/sec/sec

XML Example: <MaxAccel>147465.0</MaxAccel>

SERVO_PARAMS N/A End SERVO_PARAMS section

 </SERVO_PARAMS>

System_Dynamics N/A End System_Dynamics section

 </ System_Dynamics>

Data N/A End ServoConfigData

</Data>

6.4 MARKING JOB SPECIFICATION

The primary interface for interacting with the controller is the sendStreamData method. This method

streams data to the controller as fast as the network and buffering systems allow. Buffering is

distributed between the host operating system, the SMC operating system, the SMC control software,

and finally, the marking engine input FIFO.

sendStreamData is non-blocking in the sense that it returns as soon as the data is passed to the

downstream communications system for transfer to the target SMC. Once this method returns,

subsequent calls can be made to keep the data "pipeline" full with marking data. This technique

ensures continuous marking operation without pauses.

Job data passed to the SMC remains in vector format until it reaches the real-time marking engine

controller. Only then is it converted to time-domain command data and passed to the laser galvo

controllers.

Session API

1040-0012 Revision Q 88

6.4.1 JOB DATA TYPES

The streaming data interface can send several types of data:

1. JobData (standard) – This is data that represents a marking job using the XML-based job

definition language described in the next section. This job data is executed immediately in the

same sequence as it is sent through the interface.

2. JobData (structured) – This is data that uses XML constructs to group related job instructions

together into a segment that can be loaded to the board one time, and referred to multiple times

via a separate sequence definition. A sequence definition construct permits the ordering of

execution and iteration of pre-loaded segments.

3. CorrTableData – This data is in the same format at the correction table XML definition.

Correction table data sent this way does not persist through an SMC power cycle.

6.4.2 JOB DATA DEFINITION

Job data contains both action commands that direct the marking engine to perform specific operations,

and parametric data that affects how the SMC hardware behaves. Parameter commands do not cause

any action, but modify the behavior of subsequent action commands. To minimize the number of XML

identifier tags to express a job, the XML definition make use of two types of constructs. All action

commands use specific XML tag names to identify the action, followed by a comma-separated list of

argument values. The set tag is used with an attribute id to identify the parameter followed by a

comma- or semicolon-separated list of values.

In its simplest form, a streaming job packet is a well-formed XML document that is delimited with the

tag “Data”. For example, an empty job would look like:

<Data type='JobData' rev='2.0'></Data>

A more useful example of a simple job that draws a box would look like:

XML Text Description

<Data type='JobData' rev='2.0'> Job data type declaration

 <set id='JumpDelay'>150</set> The parameter 'JumpDelay' is set to 150µsec.

 <set id='MarkDelay'>150</set> The parameter 'MarkDelay' is set to 150µsec.

 <set id='PolyDelay'>50</set> The parameter 'PolyDelay' is set to 150µsec.

Session API

1040-0012 Revision Q 89

XML Text Description

 <set id='LaserTiming'>50</set> Set the laser time base tick to 50 20nsec periods
(1µsec).

 <set id='LaserOnDelay'>75</set> The parameter 'LaserOnDelay' is set to 75 laser timing
ticks.

 <set id='LaserOffDelay'>100</set> The parameter 'LaserOffDelay' is set to 100 laser
timing ticks.

 <set id='LaserPulse'>1; 10; 20</set> Set the modulation of LASER_MOD1 to a pulse width
of 10 laser timing ticks with a period of 20 laser timing
ticks.

 <Set id='JumpSpeed'>10; 30</Set> The parameter 'JumpSpeed' is set to 30 bits per each
10µ sec update period.

 <Set id='MarkSpeed'>10; 10</Set> The parameter 'MarkSpeed' is set to 10 bits per each
10µ update period.

 <JumpAbs>-5000; -5000</JumpAbs> Move laser galvos to the absolute position -5000, -
5000 with the laser off

 <MarkAbs>-5000; 5000</MarkAbs> Move laser galvos to the absolute position -5000, 5000
with the laser on.

 <MarkAbs>5000; 5000</MarkAbs> Move laser galvos to the absolute position 5000, 5000
with the laser on.

 <MarkAbs>5000; -5000</MarkAbs> Move laser galvos to the absolute position 5000, -5000
with the laser on.

 <MarkAbs>-5000; -5000</MarkAbs> Move laser galvos to the absolute position -5000, -
5000 with the laser on.

</Data> End job data

6.4.3 JOB TYPE SPECIFICATION

As shown in the following example, the job type is defined in the header section of the job XML,

which precedes the job commands.

Session API

1040-0012 Revision Q 90

XML Text Description

<Data type='JobData' rev='2.0'> Standard Job Data type declaration, streaming or
structured.

<Data type='CorrTableData' rev='2.2'> Correction Table data

See definitions in that section. A correction table
may be sent as a packet, but it is not persistent
through a SMC reboot.

6.5 JOB PARAMETERS AND COMMANDS

Jobs are made up of parameter definitions and action commands. Parameters are defined using the

Set tag. Multiple values for parameters are expressed in a comma-separated list. Commands are

represented by a keyword and one or more arguments in a list. Parameters and commands are

grouped by function in the following sections.

6.5.1 USER UNITS CONVERSION

ActuatorUnits

Description
Specifies the scanner bit resolution expectation of the job data. This
information is used to scale coordinate values to the 24-bit native
resolution required by the SMC

Syntax <set id='ActuatorUnits'>{STR unitsID}</set>

Example <set id='ActuatorUnits'>bits-16</set>

Arguments unitsID Identifies a conversion ratio.

Session API

1040-0012 Revision Q 91

ActuatorUnits

Value
range

bits-16 – coordinate values are assumed to be for a 16-bit
coordinate system. This is the default for backward
compatibility with the EC1000.

bits-20 – coordinate values are assumed to be for a 20-bit
coordinate system as used by the 20-bit version of the
EC1000.

bits-24 – coordinate values are assumed to be for a 24-bit
coordinate system as used by the SMC.

Units

Description

Specifies the units of the job coordinate data. It implicitly sets the
conversion ratio used to map a motion-related command values from the
user units to internally required “bits” units. This command uses the
current cal factors of the SMC as defined by the correction table file that
is loaded at boot time. These values may be over-ridden by using the
commands <set id='XYCalFactor'> and <set id='ZCalFactor'>.

This command affects the units of all motion commands that reference a
coordinate or offset.

Syntax <set id='Units'>{U16 unitsID}</set>

Example <set id='Units'>2</set>

Arguments

unitsID Identifies a conversion ratio.

Value
range

0 - bits (1:1); Note: This is the default value.

1 - mm (UserUnits * CalFactor)

2 - inch (UserUnits * 25.4 * CalFactor)

3 - mils ((UserUnits/1000) * 25.4 * CalFactor)

Note: In options 1, 2, and 3, UserUnits is the motion-
related command value.

XYCalFactor

Description
Sets the X- and Y-axis calibration factor used in converting coordinate
system units. Note that this command overrides the cal factors that are
read by the API from the correction table file during a session login.

Session API

1040-0012 Revision Q 92

XYCalFactor

Syntax <set id='XYCalFactor'>{FLT multiplier}</set>

Example <set id='XYCalFactor'>500</set>

Arguments

multiplier Used as a bits/millimeter multiplier in converting user
motion command units into the internally required “bits”
units. The actual ratio is defined per the <set id'=Units'>
command.

Value
range

The minimum value is 0.

The maximum value is the practical limit of the hardware.

ZCalFactor

Description
Sets the Z-axis calibration factor used in converting coordinate system
units. Note that this command overrides the cal factor that is read by the
API from the correction table file during a session login.

Syntax <set id='ZCalFactor'>{FLT multiplier}</set>

Example <set id='ZCalFactor'>125</set>

Arguments

multiplier Used as a bits/millimeter multiplier in converting user
motion command units into the internally required “bits”
units. The actual ratio is defined per the <set id'=Units'>
command.

Value
range

The minimum value is 0.

The maximum value is the practical limit of the hardware.

Session API

1040-0012 Revision Q 93

6.5.2 MOTION CONTROL PARAMETERS

CmdRangeCheckMode

Description Sets the behavior of the command range checking feature.

Syntax
<set id='CmdRangeCheckMode'>{U16 enable; U16 port; U16 value}1; 5;
1</set>

Example <set id='CmdRangeCheckMode'>1; 5; 1</set>

Arguments

enable Enable/disable checking

Value
range

0 – Disables checking

1 – Enables checking

port Digital output port to manipulate

Value
range

See WriteDigital.

value Port value to set if out of range

Value
range

See WriteDigital.

JumpDelay

Description Sets the delay used at the end of a jump command.

Syntax <set id='JumpDelay'>{U16 duration}</set>

Example <set id='JumpDelay'>150</set>

Arguments

duratio
n

The length of time to delay (in µsecs)

Value
range

0 - 32767

Session API

1040-0012 Revision Q 94

JumpSpeed (Two argument syntax)

Description
Establishes the vector speed at which a jump is executed. The parameters
are normally derived from an application speed setting expressed as
mm/sec, bits/msec, or some other appropriate ratio.

Syntax <set id='JumpSpeed'>{U16 stepTime; FLT stepSize}</set>

Example <set id='JumpSpeed'>10; 30</set>

Arguments

stepTime The duration in µsecs between each micro-step. This is how
often the galvo position command is updated with an
incremental stepSize.

Value
range

10 - 65535

stepSize The distance traveled in bits for each micro-step. This value
can be an integer or fractional number. When a fractional
number is used, it is limited to 10-bit precision and the
maximum step size is reduced to 64.0.

Value
range

Integer: 1 – 65535 bits

Fractional: .001 - 64.0

JumpSpeed (Single argument syntax)

Description Establishes the vector speed at which a jump is executed.

Syntax <set id='JumpSpeed'>{FLT speed}</set>

Example <set id='JumpSpeed'>10000</set>

Arguments

speed Jump vector speed; the argument is interpreted as a floating-
point vector speed in user-units/second. The update rate is
specified in the JumpStepTime parameter.

Value
range

The minimum value is >0.

The maximum value is the practical limit of the hardware.

Session API

1040-0012 Revision Q 95

JumpStepTime

Description
Sets the update interval to be used in defining the jumping speed when
the command
<set id='JumpSpeed'> is invoked with a single argument.

Syntax <set id='JumpStepTime'>{U16 value}</set>

Example <set id='JumpStepTime'>10</set>

Arguments

value JumpSpeed update interval (in µsecs). The default value is 10.

Value
range

The minimum value is 10.

The maximum value is the practical limit of the hardware.

MarkDelay

Description Sets the delay used at the end of a series of marks.

Syntax <set id='MarkDelay'>{U16 duration}</set>

Example <set id='MarkDelay'>150</set>

Arguments

durati
on

Length of time to delay (in µsecs)

Value
range

0 - 32767

MarkSpeed (Two argument syntax)

Description
Establishes the vector speed at which a mark is executed. The parameters
are normally derived from an application speed setting expressed as
mm/sec, bits/msec, or some other appropriate ratio.

Syntax <set id='MarkSpeed'>{U16 stepTime; FLT stepSize}</set>

Example <set id='MarkSpeed'>10; 30</set>

Arguments
stepTim
e

The duration in µsecs between each micro-step. This is how
often the galvo position command is updated with an
incremental stepSize.

Session API

1040-0012 Revision Q 96

MarkSpeed (Two argument syntax)

Value
range

10 - 65535

stepSize The distance traveled in bits for each micro-step. This value
can be an integer or fractional number. When a fractional
number is used, it is limited to 10-bit precision and the
maximum step size is reduced to 64.0.

Value
range

Integer: 1 – 65535 bits

Fractional: .001 - 64.0

MarkSpeed (Single argument syntax)

Description Establishes the vector speed at which a mark is executed.

Syntax <set id='MarkSpeed'>{FLT speed}</set>

Example <set id='MarkSpeed'>5000.0</set>

Arguments

speed Mark vector speed; the argument is interpreted as a floating-
point vector speed in user-units/second. The update rate is
specified in the MarkStepTime parameter.

Value
range

The minimum value is >0.

The maximum value is the practical limit of the hardware.

MarkStepTime

Description
Sets the update interval to be used in defining the marking speed when the
command <set id='MarkSpeed'> is invoked with a single argument.

Syntax <set id='MarkStepTime'>{U16 value}</set>

Example <set id='MarkStepTime'>10</set>

Arguments

value MarkSpeed update interval (in µsecs). The default value is 10.

Value
range

The minimum value is 10.

The maximum value is the practical limit of the hardware.

Session API

1040-0012 Revision Q 97

PolyDelay

Description Set the delay to be used at the junction of two marks.

Syntax <set id='PolyDelay'>{U16 duration}</set>

Example <set id='PolyDelay'>150</set>

Arguments

duratio
n

The length of time (in µsecs) to delay between two sequential
mark vectors

Value
range

0 - 32767

VariJumpDelay

Description
Below a given jumpLengthLimit, the jump delay is linearly scaled down
from the JumpDelay value to the minimumDelay as the jump distance
approaches zero.

Syntax
<set id='VariJumpDelay'>{U16 minimumDelay; U16
jumpLengthLimit}</set>

Example <set id='VariJumpDelay'>50; 2000</set>

Arguments

minimumDelay Minimum length (in laser timing ticks) of a jump delay

Value range 0 - 65535

jumpLengthLimi
t

Jump length threshold (in 1-bit user units) below
which the variable jump delay will be applied

Value range 1 - 65535

VariPolyDelayFlag

Description
Enables or disables the use of variable polygon delays. If variable polygon
delays are enabled, the PolyDelay value is adjusted proportional to the
angular change in the next segment of the poly-vector.

Session API

1040-0012 Revision Q 98

VariPolyDelayFlag

Syntax <set id='VariPolyDelayFlag'>{BOOL value}</set>

Example <set id='VariPolyDelayFlag'>true</set>

Arguments

value Variable polygon delay enabled state

Value
range

true (enabled)

false (disabled)

Comments

When this feature is enabled, the PolyDelay value is scaled proportionate
to the angle of the vertex. The scaling is according to a raised cosine
function as shown below:

2x

0

0° 180°90°

1x

Scale
factor(Ɵ) Ɵ

Wobble

Description
Allows varying line width during a Mark command. The marking vector is
modified with a circular repeating pattern defined by the param and
amplitude arguments.

Syntax <set id='Wobble'>{U16 param; FLT amplitude}</set>

Example <set id='Wobble'>250; 10</set>

Session API

1040-0012 Revision Q 99

Wobble

Arguments

param Interpretation varies per the setting of the WobbleMode
command.

If WobbleMode = 1, this value represent the overlap of the
wobble movement (in percent)

If WobbleMode = 2, this value is the Period of the wobble
movement (in µsecs)

Value
range

-500 – 99 (WobbleMode = 1)

20 – 65535 (WobbleMode = 2)

amplitude Amplitude of the circular wobble movement (in job units)

Value
range

Depends on job units

WobbleMode

Description
Sets the mode of the Wobble command that allows varying line width
during a Mark command. The mode sets how the parameters of the
Wobble command are interpreted.

Syntax <set id='WobbleMode'>{U16 mode}</set>

Example <set id='WobbleMode'>2</set>

Arguments

mode Sets the mode of the wobble command.

0 – Constant fluence (Reserved). The linear mark speed is
adjusted such that the tangential velocity of the wobble
pattern is performed at the mark speed while maintaining a
specified overlap.

1 – Constant linear mark speed with a specified overlap

2 – Constant linear mark speed with a constant period
(Default)

Value
range

0 - 2

Session API

1040-0012 Revision Q 100

WobbleTable

Description

Allows a custom specification of the wobble pattern. Independent data can
be specified for the X and Y axes for a table length of 1024. The table
represents the values of a trajectory for the X and Y axes that will be
repeated at the frequency specified in the XFrequency and YFrequency
attributes. The table data is additive to the normal trajectory being used
for marking.

Syntax

<WobbleTable XFrequency='{FLT XFreq}' YFrequency='{FLT YFreq}'>

 <Pt>{FLT XWobVal[0]; FLT YWobVal[0]}</Pt>

 <Pt>{FLT XWobVal[1]; FLT YWobVal[1]}</Pt>

 …

 <Pt>{FLT XWobVal[1023]; FLT YWobVal[1023]}</Pt>

</WobbleTable>

Example

<WobbleTable XFrequency='2.5' YFrequency='0.9' >

 <Pt>0.0; 0.0</Pt>

 <Pt>0.1; 0.05</Pt>

 <Pt>0.2; 0.1</Pt>

 …

 <Pt>0.0; 0.0</Pt>

</set>

Arguments

XFrequency Specifies the frequency in KHz that the X axis table will
be repeated as it is applied to the marking vector.

Value range 0.1 – 10.0KHz

YFrequency Specifies the frequency in KHz that the Y axis table will
be repeated as it is applied to the marking vector.

Value range 0.1 – 10.0KHz

Pt Specifies the X & Y offsets that will be added to the
marking vector as the table is being traversed. Because
the tables for the X and Y axes can be repeated at
differnent frequencies, the table data parings are not
necessarilly applied at the same time.

Session API

1040-0012 Revision Q 101

WobbleTable

Value range Depends on job units

LissajousWobble

Description

Sets the parameters of a wobble pattern that is in the shape of a lissajous
curve. This is a time and position variable pattern that pseudo-
randomizes the wobble path. The formulas used to calculate the
instantaneous wobble values is:

Xw(t) = XAmplitude * sin(ToRadiansPerSec(XFrequencyInKHz)(t) +

 ToRadians(XPhaseInDegrees)

Yw(t) = YAmplitude * sin(ToRadiansPerSec(YFrequencyInKHz)(t) +

 ToRadians(XPhaseInDegrees)

NOTE: Because of the limited bandwidth of the galvos, there will be a
frequency limit above which the wobble pattern will become distorted.

Syntax
<set id='LissajousWobble'>{FLT XAmplitude; FLT YAmplitude; FLT
XFrequencyInKHz; FLT YFrequencyInKHz; FLT XPhaseInDegrees}</set>

Example <set id='LissajousWobble'>0.1; 0.5; 1.0; 2.5; 45.0</set>

Arguments

XAmplitude Amplitude of the X axis wobble pattern

Value range Depends on job units.

YAmplitude Amplitude of the Y axis wobble pattern

Value range Depends on job units.

XFrequencyInKHz Frequency of the X axis pattern repetition

Value range 0.1 – 10KHz

YFrequencyInKHz Frequency of the Y axis pattern repetition

Value range 0.1 – 10KHz

XPhaseInDegrees Phase relationship of the Y axis relative ot the X
axis at the start of the waveform generation

Session API

1040-0012 Revision Q 102

LissajousWobble

Value range +/- 180 degrees

WobbleEnable

Description

Enables or disables the wobble function.

Note: Wobble parameters should have already been set using the <Set
id='Wobble'> parameter.

Syntax
<WobbleEnable>{U16 wobbleEnableSetting}, [U16
direction]</WobbleEnable>

Example <WobbleEnable>0, 1</WobbleEnable>

Arguments

wobbleEnableSetting Indicates whether wobble is to be enabled or
disabled.

Value range 0 – Disable wobble

1 – Enable wobble

Direction Optional argument indicating the
directionality of the circular wobble

Value range 0 – CCW rotation (default)

1 – CW rotation

XY2ErrorCheckMode (deprecated)

Description
Enables or disables XY2-100 status checking and the generation of
exceptions when the status is not as expected. Replaced by
GalvoErrorCheckMode.

Syntax
<set id='XY2ErrorCheckMode'>{U16 enable; HEX U32 mask; HEX U32
value}</set>

Session API

1040-0012 Revision Q 103

XY2ErrorCheckMode (deprecated)

Arguments

enable If enabled, the XY2-100 and XY2-100e status registers are
continuously evaluated by the following method:

bit-wise ANDing the “mask” argument with the XY2-100 status
words to select the bits to be evaluated and then

comparing the selected bits to the “value” argument

Note: The mask and value arguments are described below.

If the value does not equal the actual masked status register, an
exception is generated and marking is immediately halted.
Recovery requires sending an Abort priority message to reset
the logic.

Value
range

0 – Disable XY2-100 status checking and the generation of
exceptions when the status is not as expected.

1 – Enable XY2-100 status checking and the generation of
exceptions when the status is not as expected.

mask The mask is split into a lower (bits[15..0]) and upper
(bits[31..16]) value corresponding to the primary XY2-100 port
and secondary XY2-100e port, respectively.

Note: See the description of the enable argument (above) to
understand the interpretation of this value.

Value
range

0 - 0xFFFFFFFF

value The mask is split into a lower (bits[15..0]) and upper
(bits[31..16]) value corresponding to the primary XY2-100 port
and secondary XY2-100e port, respectively.

Note: See the description of the enable argument (above) to
understand the interpretation of this value.

Value
range

0 - 0xFFFFFFFF

Session API

1040-0012 Revision Q 104

GalvoErrorCheckMode

Description

Enables or disables Galvo status checking and the generation of
exceptions when the status is not as expected. XY2-100 or GSBus status
checking is automatically chosen based on the presence of devices on the
GSBus. If no GSBus device is detected, then XY2-100 is assumed.

Syntax
<set id='GalvoErrorCheckMode'>{U16 enable; HEX U32 mask; HEX U32
value}</set>

Example <set id='GalvoErrorCheckMode'>1; 0x0000FFFF; 0x0000FDFD</set>

Arguments

enable If enabled and no GSBus devices are present, the XY2-100
and XY2-100e status registers are continuously evaluated. If
GSBus devices are present, then the GSBus status word is
continuously evaluate by the following method:

bit-wise ANDing the “mask” argument with the galvo status
words to select the bits to be evaluated and then

comparing the selected bits to the “value” argument

Note: The mask and value arguments are described below.

If the value does not equal the actual masked status
register, an exception is generated and marking is
immediately halted. Recovery requires sending an Abort
priority message to reset the logic.

Value
range

0 – Disable XY2-100 (GSBus) status checking and the
generation of exceptions when the status is not as
expected.

1 – Enable XY2-100 (GSBUS) status checking and the
generation of exceptions when the status is not as
expected.

mask For XY2-100, the mask is split into a lower (bits[15..0]) and
upper (bits[31..16]) value corresponding to the primary XY2-
100 port and secondary XY2-100e port, respectively. For
the GSBus, the status is divided into eight 4-bit fields, one
field for each galvo axis. The least significant four bits
corresponds to the first axis found.

Note: See the description of the enable argument (above)
to understand the interpretation of this value.

Session API

1040-0012 Revision Q 105

GalvoErrorCheckMode

Value
range

0 - 0xFFFFFFFF

value For XY2-100, the mask is split into a lower (bits[15..0]) and
upper (bits[31..16]) value corresponding to the primary XY2-
100 port and secondary XY2-100e port, respectively. For
the GSBus, the status is divided into eight 4-bit fields, one
field for each axis. The least significant four bits
corresponds to the first axis found.

Note: See the description of the enable argument (above)
to understand the interpretation of this value.

Value
range

0 - 0xFFFFFFFF

XY2AxisDisable (deprecated)

Description
Enables or disables axis motion on the two XY2-100 ports. Replaced by
GalvoAxisDisable.

Syntax
<set id='XY2AxisDisable'>{U16 XY2-100eAxisMask; U16 XY2-
100AxisMask}</set>

Example <set id='XY2AxisDisable'>0; 1</set>

Arguments

XY2-100eAxisMask A three bit field disabling the corresponding axis
on the secondary XY2-100e port. Bits[2..0]
correspond to axes Z, Y, X, respectively. All bits
== 0 means enable all axes on the head.

Value range 0 - 7

XY2-100AxisMask A three bit field disabling the corresponding axis
on the primary XY2-100 port. Bits[2..0]
correspond to axes Z, Y, X, respectively.

Value range 0 - 7

Session API

1040-0012 Revision Q 106

GalvoAxisDisable

Description Enables or disables axis motion on the two three-axis ports.

Syntax
<set id='GalvoAxisDisable'>{U16 Head2AxisMask; U16
Head1AxisMask}</set>

Example <set id='GalvoAxisDisable'>0; 1</set>

Arguments

Head2AxisMask A three bit field disabling the corresponding axis
on the secondary XY2-100-2 port. Bits[2..0]
correspond to axes Z, Y, X, respectively. All bits
== 0 means enable all axes on the head.

For GSBus based heads, Bits[2..0] correspond to
axes , respectively.

Value range 0 - 7

Head1AxisMask A three bit field disabling the corresponding axis
on the primary XY2-100 port. Bits[2..0]
correspond to axes Z, Y, X, respectively. All bits
== 0 means enable all axes on the head.

For GSBus based heads, Bits[2..0] correspond to
axes 5, 4, 3, respectively.

Value range 0 - 7

GalvoAxisConfig

Description Permits flipping of each axis and swapping XY axes for both heads

Syntax <set id='GalvoAxisConfig'>U8 AxisConfigMask</set>

Example <set id='GalvoAxisConfig'>0x11</set>

Session API

1040-0012 Revision Q 107

GalvoAxisConfig

Arguments

AxisConfigMask This hexadecimal value permits the flipping and
swapping of axes for each scan head
independently. The value is divided into two 4-bit
fields, one for each head according to the
following table:

Head Bit Function

1 0 Flip X

1 Flip Y

2 Flip Z

3 Swap X & Y

2 4 Flip X

5 Flip Y

6 Flip Z

7 Swap X & Y

GSBusDisable

Description Disables or enables active GSBus command channel driving by the SMC

Syntax <GSBusDisable>{bool disable}</GSBusDisable>

Example <GSBusDisable>true</GSBusDisable>

Arguments

disable Boolean indicating the desired state of GSBus
command channel driving. Active command
channel driving should be disabled if
TuneMaster-II is used to examine and change
tuning parameters of an attached Lightning-II
scanner system.

Session API

1040-0012 Revision Q 108

GSBusDisable

Value range True or 1 – Disable driving the GSBus command
channels

False or 0 – Enable GSBus command channel
driving

XY2AddressMode

Description Sets the addressing mode of the XY2-100 interface

Syntax <set id='XY2AddressMode'>{Mode}</set>

Example <set id='XY2AddressMode'>Normal</set>

Arguments

Mode Defines the command data width of the XY2-
100 interface. Normal is traditional 16-bit
command data. Enhanced is 20-bit command
data used with Cambridge Technology
LightningTM II galvos with an XY2-100 interface.

Value range Normal or 0

Enhanced or 1

6.5.3 MOTION CONTROL COMMANDS

Note: Coordinate units are controlled by the <set id='Units'> parameter.

ArcAbs

Description Mark and Arc shape using the current marking parameters.

Syntax <ArcAbs>{FLT xCenter; FLT yCenter; FLT sweepAngle}</ArcAbs>

Example <ArcAbs>1000; 2000; 47.5</ArcAbs>

Arguments
xCenter

yCenter

Center of the arc

Session API

1040-0012 Revision Q 109

ArcAbs

Value range -223 – (223-1) (bits) or +/- ½ field size (user units)

sweepAngle How far to sweep the arc in degrees. A positive
value is counter-clockwise.

The starting point of the arc is defined by the target
of the last Jump or Mark instruction.

Value range 0 - 360

EnableParkPosition (deprecated)

Description

Enables or disables the “parking” of a scanhead in dual-scanhead
systems. GalvoAxisDisable is the preferred command.

Note: It is expected that a JumpAbs command is executed prior to this
command to move the galvos to the “park” position.

Syntax <EnableParkPosition>{U16 parkSetting}</EnableParkPosition>

Example <EnableParkPosition>2</EnableParkPosition>

Arguments

parkSetting Identifies the scanhead(s) to be enabled or disabled

Value range 0 - Parking is disabled for both heads

1 - Parking is enabled for head 1 (analog or XY2-
extended port)

2 - Parking is enabled for head 2 (normal XY2-100 port)

3 - Both heads are parked.

JumpAbs

Description Moves laser galvos to the absolute position with the laser off.

Syntax
<JumpAbs>{FLT xCoordinate; FLT yCoordinate[; FLT
zCoordinate]}</JumpAbs>

Example <JumpAbs>-5000; -5000; 100</JumpAbs>

Session API

1040-0012 Revision Q 110

JumpAbs

Arguments

xCoordinate X-coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the X field size of the
system in floating point notation.

yCoordinate Y-coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the Y field size of the
system in floating point notation.

zCoordinate Z coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the Z field size of the
system in floating point notation.

JumpAbsEx

Description

Moves laser galvos to the absolute position with the laser off.

Note: This command differs from the JumpAbs command (above) in
that it permits values that exceed the 16-bit range of a normal scan
head. This command is used in large virtual-field MOTF applications.

Syntax
<JumpAbsEx>{FLT xCoordinate; FLT yCoordinate[; FLT
zCoordinate]}</JumpAbsEx>

Session API

1040-0012 Revision Q 111

JumpAbsEx

Example <JumpAbsEx>-50000; -65000; 1000</JumpAbsEx>

Arguments

xCoordinate X coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

yCoordinate Y coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zCoordinate Z coordinate of the end of a jump vector. Values are
floating point and are converted into system “bits”
units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

Session API

1040-0012 Revision Q 112

JumpAbsList

Description
Move the laser galvos to the each one of the specified points in
succession at the specified update interval with the laser off.

Syntax

<JumpAbsList tick='{U16 tick}'>
 <Pt>{FLT X0; FLT Y0; FLT Z0}</Pt>
 <Pt>{FLT X1; FLT Y1; FLT Z1}</Pt>
 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn}</Pt>

</JumpAbsList>

Example

<JumpAbsList tick='10'>
 <Pt>100; 215; 10</Pt>
 <Pt>110; 240; 30</Pt>
 <Pt>120; 250; 50</Pt>
 <Pt>130; 255; 60</Pt>
</JumpAbsList>

Arguments

tick The galvo command update interval (in µsecs)

Value range 10 – 65535

Xn X coordinate in a sequence of point coordinates that
will be written to the galvos at the rate specified by the
tick parameter. Values are floating point and are
converted into system “bits” units per the Units
command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that
will be written to the galvos at the rate specified by the
tick parameter. Values are floating point and are
converted into system “bits” units per the Units
command.

Session API

1040-0012 Revision Q 113

JumpAbsList

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

Zn Z coordinate in a sequence of point coordinates that
will be written to the galvos at the rate specified by the
tick parameter. Values are floating point and are
converted into system “bits” units per the Units
command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

Description
Moves the galvos to a position relative to the last commanded position
with the laser off.

Syntax <JumpRel>{FLT xOffset; FLT yOffset[; FLT zOffset]}</JumpRel>

Example <JumpRel>25; 50; 0</JumpRel>

Arguments

xOffset X offset used to calculate a jump vector relative to the
last commanded position. Values are floating point
and are converted into system “bits” units per the
Units command.

Value range -65535 - 65535

yOffset Y offset used to calculate a jump vector relative to the
last commanded position. Values are floating point
and are converted into system “bits” units per the
Units command.

Value range -65535 - 65535

Session API

1040-0012 Revision Q 114

zOffset Z offset used to calculate a jump vector relative to the
last commanded position. Values are floating point
and are converted into system “bits” units per the
Units command.

Note: The Z offset is optional. If the Z offset is not
specified, its relative move is set to zero.

Value range -65535 - 65535

JumpRelEx

Description

Moves the galvos to a position relative to the last commanded position
with the laser off.

Note: This command differs from the JumpRel command (above) in that it
permits values that exceed the 16-bit range of a normal scan head. This
command is used in large virtual-field MOTF applications.

Syntax <JumpRelEx>>{FLT xOffset; FLT yOffset[; FLT zOffset]}</JumpRelEx>

Example <JumpRelEx>-50000; -65000; 1000</JumpRelEx>

Arguments

xOffset X offset used to calculate a jump vector relative to the
last commanded position. Values are floating point and
are converted into system “bits” units per the Units
command.

Value range -231 - 231-1

yOffset Y offset used to calculate a jump vector relative to the
last commanded position. Values are floating point and
are converted into system “bits” units per the Units
command.

Value range -232 - 232-1

zOffset Z offset used to calculate a jump vector relative to the
last commanded position. Values are floating point and
are converted into system “bits” units per the Units
command.

Session API

1040-0012 Revision Q 115

JumpRelEx

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -232 - 232-1

JumpAndDrillList

Description

Moves the galvos to each one of the specified points in succession and
fires the laser. The laser properties are changed at each location as
specified in the mode of operation.

Note: Jumps are not micro-vectored, so galvo instability may result if
jump distances are too large.

Syntax

<JumpAndDrillList LaserOnTime='{U16 laserOnTime}'
LaserFireMode='{Enum laserFireMode}' [ExtSyncPin ='{U16 extSyncPin }']
[ExtSyncPinState='{U16 extSyncPinState }']>
 <Pt>{FLT X0; FLT Y0}</Pt>
 <Pt>{FLT X1; FLT Y1}</Pt>
 . . .

 <Pt>{FLT Xn; FLT Yn}</Pt>

</JumpAndDrillList >

Example

< JumpAndDrillList LaserOnTime='20' LaserFireMode='NoWait'>
 <Pt>100; 215</Pt>
 <Pt>110; 240</Pt>
 <Pt>120; 250</Pt>
 <Pt>130; 255</Pt>
</JumpAndDrillList>

Argument

LaserOnTime Specifies the duration that the laser is fired (in
laser ticks).

Value range 0 - 65535

LaserFireMode Specifies the synchronization level of issuance of
the next jump relative to the firing of the laser.

Session API

1040-0012 Revision Q 116

JumpAndDrillList

Value range NoWait – Fire the laser and do not wait.
Immediately jump to the next location.

WaitUntilOn – Fire the laser and wait until it
actually is on. This accommodates any
LaserOnDelay that may be specified.

WaitUntilOff – Fire the laser and wait until it is off.
This accommodates the LaserOnDelay,
LaserOnTime, and LaserOffDelay

WaitUntilExtSync – Fire the Laser and wait until an
external signal specified by the optional argument
ExtSyncPin is asserted to the state specified by the
optional argument ExtSyncPinState.

WaitUntilGalvoCmdDelayComp – Fire the laser
and wait for the amount of time (LaserOnTime –
GalvoCmdDelayComp). GalvoCmdDelayComp is
specified using the command:

<set id=’GalvoCmdDelayComp’>. If the result is
negative, then jump to the next site immediately.

ExtSyncPin Optional argument required only if the
LaserFireMode is set to WaitUntilExtSync. Specifies
the external pin to sense. The pin identifier is the
same as the portNumber argument in the
command WaitForIO

Value range 0 – 31 See WaitForIO for details.

ExtSyncPinState Optional argument required only if the
LaserFireMode is set to WaitUntilExtSync. Specifies
the logical state of the external pin being sensed.
The state should take into consideration assertion
inversions due to signal conditioning circuitry.

Value range 0 – 1

Xn X coordinate in a sequence of point coordinates
that will be written to the galvos in succession.

The position values are floating point and are
converted into system “bits” units per the Units
command.

Session API

1040-0012 Revision Q 117

Binary interface for JumpAndDrillList data

The JumpAndDrillList XML command can pass up to 65536 discrete drill points in a single instruction.

This can be a large amount of ASCII data when represented in XML format and can be inefficient to

generate with certain compilers. The API provide special binary interfaces to pass the JumpAndDrillList

data without converting to XML. Each call to these methods creates a job packet that is sent to the

SMC for execution just as if it were passed as XML.

sendJumpAndDrillList

Purpose Sends binary JumpAddDrillList streaming data to an SMC device session

Syntax

Uint sendJumpAndDrillList (ushort numPoints,

float[] xCoord,

float[] yCoord,

ushort laserOnTime,

ushort laserFireMode,

ushort extSyncPin,

ushort extSyncPinState)

JumpAndDrillList

Value range -231 - 231-1

Note: Depending on the unit selection, this value
can take on a range which represents the X virtual
field size of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates
that will be written to the galvos in succession.

The position values are floating point and are
converted into system “bits” units per the Units
command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value
can take on a range which represents the Y virtual
field size of the system in floating point notation.

Session API

1040-0012 Revision Q 118

sendJumpAndDrillList

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the
list. The array length is expected to be numPoints
long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints
long.

 laserOnTime The laser firing time in LaserTick units

laserFireMode Specifies what to do after firing the laser

0 = Fire the laser and do not wait. Immediately jump
to the next location.

1 = Fire the laser and wait until it is on. This
accommodates any LaserOnDelay that may be
specified.

2 = Fire the laser and wait until it is off. This
accomodates the LaserOnDelay, LaserOnTime, and
LaserOffDelay

3 = Fire the Laser and wait until an external signal
specified by the optional argument ExtSyncPin is
asserted to the state specified by the optional
argument ExtSyncPinState.

extSyncPin Specifies the external pin to sense. The pin identifier

is the same as the portNumber argument in the
command WaitForIO

extSyncPinState Specifies the logical state of the external pin being
sensed. The state should take into consideration
assertion inversions due to signal conditioning
circuitry.

Comments
extSyncPin and extSyncPinState are interpreted only if the laserFireMode
is set to 3. Set the values to zero if laserFireMode is 0 – 2.

Session API

1040-0012 Revision Q 119

sendJumpAndDrillList

See also JumpAndFireList

sendJumpAndDrillListSegment

Purpose
Sends binary JumpAddDrillList as a deferred-execution named segment to
an SMC device session

Syntax

Uint sendJumpAndDrillListSegment (

ushort numPoints,

float[] xCoord,

float[] yCoord,

ushort laserOnTime,

ushort laserFireMode,

ushort extSyncPin,

ushort extSyncPinState

string segmentID)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the
list. The array length is expected to be numPoints
long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints
long.

 laserOnTime The laser firing time in LaserTick units

Session API

1040-0012 Revision Q 120

sendJumpAndDrillListSegment

laserFireMode Specifies what to do after firing the laser

0 = Fire the laser and do not wait. Immediately jump
to the next location.

1 = Fire the laser and wait until it actually is on. This
accommodates any LaserOnDelay that may be
specified.

2 = Fire the laser and wait until it is off. This
accomodates the LaserOnDelay, LaserOnTime, and
LaserOffDelay

3 = Fire the Laser and wait until an external signal
specified by the optional argument ExtSyncPin is
asserted to the state specified by the optional
argument ExtSyncPinState.

extSyncPin Specifies the external pin to sense. The pin identifier

is the same as the portNumber argument in the
command WaitForIO

extSyncPinState Specifies the logical state of the external pin being
sensed. The state should take into consideration
assertion inversions due to signal conditioning
circuitry.

 segmentID Specifies the name of the segment.

Comments
extSyncPin and extSyncPinState are interpreted only if the laserFireMode is
set to 3. Set the values to zero if laserFireMode is 0 – 2.

See also JumpAndFireList

GalvoCmdDelayComp

Description
Sets the value to use in the JumpAndDrillList command when the
LaserFiringMode is set to WaitUntilGalvoCmdDelayComp

Session API

1040-0012 Revision Q 121

GalvoCmdDelayComp

Syntax <set id=‘GalvoCmdDelayComp’>{U16 value}</set>

Example <set id=’GalvoCmdDelayComp’>30</set>

Arguments

value Number of micro-seconds that represent the delay from
issuing a jump command to when the galvos indicate out
of position

Value range 0 – 500

JumpAndFireList

Description

Moves the galvos to each one of the specified points in succession and
fires the laser. The laser properties are changed at each location as
specified in the mode of operation.

Note: Jumps are not micro-vectored, so galvo instability may result if
jump distances are too large.

Syntax

<JumpAndFireList LaserOnTime='{U16 LaserOnTime}' LaserOnDelay='{U16
LaserOnDelay}' [OutputMode='{U16 outputMode}']>
 <Pt>{FLT X0; FLT Y0; FLT Z0; U32 laserValue0}</Pt>
 <Pt>{FLT X1; FLT Y1; FLT Z1; U32 laserValue1}</Pt>
 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn; U32 laserValuen}</Pt>

</JumpAndFireList>

Example

< JumpAndFireList LaserOnTime='10' LaserOnDelay='0' OutputMode='0'>
 <Pt>100; 215; 10; 1</Pt>
 <Pt>110; 240; 30; 2</Pt>
 <Pt>120; 250; 50; 3</Pt>
 <Pt>130; 255; 60; 0</Pt>
</JumpAndFireList>

Arguments

LaserOnTime Specifies the duration that the laser is fired (in laser
ticks).

Value range 0 - 65535

LaserOnDelay Specifies the waiting period (in µsecs) before firing
after an incremental jump.

Session API

1040-0012 Revision Q 122

JumpAndFireList

Value range 0 - 65535

outputMode Specifies how to interpret laserValuen.

Value range 0 = Interpret laserValuen as a laser pulse-width pair
(laser-ticks)

1 = Interpret laserValuen as Analog Port 1 value (12-
bits)

2 = Interpret laserValuen as Analog Port 2 value (12-
bits)

3 = Interpret laserValuen as Digital power port value
(8-bits)

Xn X coordinate in a sequence of point coordinates that
will be written to the galvos in succession.

The position values are floating point and are
converted into system “bits” units per the Units
command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value
can take on a range which represents the X virtual
field size of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that
will be written to the galvos in succession.

The position values are floating point and are
converted into system “bits” units per the Units
command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value
can take on a range which represents the Y virtual
field size of the system in floating point notation.

Zn Z coordinate in a sequence of point coordinates that
will be written to the galvos in succession.

The position values are floating point and are
converted into system “bits” units per the Units
command.

Session API

1040-0012 Revision Q 123

JumpAndFireList

Value range -231 - 231-1

Note: Depending on the unit selection, this value
can take on a range which represents the Z virtual
field size of the system in floating point notation.

laserValuen Value is interpreted per the mode specification.
The value is applied to the hardware prior to the
laser being fired.

Value range The value range is mode-dependent. If outputMode
= 0, the value represents individual pulse width
settings in laser ticks for LASER_MOD1 and
LASER_MOD2. The LASER_MOD1 setting is
specified in bits [15 – 0], and the LASER_MOD2
setting in bits [31 – 16]

Binary interface for JumpAndFireList data

The JumpAndFireList XML command can pass up to 65536 discrete pixels worth of data in a single

instruction. This can be a large amount of ASCII data when represented in XML format and can be

inefficient to generate with certain compilers. The API provided special binary interfaces to pass the

JumpAndFireList data without converting to XML. Each call to these methods creates a job packet that

is sent to the SMC for execution just as if it were passed as XML. Both 2-D and 3-D methods are exposed

using streaming or structured job control.

sendJumpAndFireList2D

Purpose
Sends binary 2-D JumpAddFireList streaming data to an SMC device
session

Session API

1040-0012 Revision Q 124

sendJumpAndFireList2D

Syntax

Uint sendJumpAndFireList2D (ushort numPoints,

float[] xCoord,

float[] yCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the
list. The array length is expected to be numPoints
long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints
long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to
be numPoints long.

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair
(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-
bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-
bits)

3 = Interpret laserValue[n] as Digital power port value
(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

Session API

1040-0012 Revision Q 125

sendJumpAndFireList2D

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings
in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1
setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits
[31 – 16]

For other settings of outputMode, the value is contained in the least-
significant 16-bits of the value.

See also JumpAndFireList

sendJumpAndFireList3D

Purpose
Sends binary 3-D JumpAddFireList streaming data to an SMC device
session

Syntax

Uint sendJumpAndFireList3D (ushort numPoints,

float[] xCoord,

float[] yCoord,

float[] zCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the
list. The array length is expected to be numPoints
long.

Session API

1040-0012 Revision Q 126

sendJumpAndFireList3D

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints
long.

zCoord An array of Z coordinate values for the points in the

list. The array length is expected to be numPoints
long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to
be numPoints long.

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair
(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-
bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-
bits)

3 = Interpret laserValue[n] as Digital power port value
(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings
in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1
setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits
[31 – 16]

For other settings of outputMode, the value is contained in the least-
significant 16-bits of the value.

Session API

1040-0012 Revision Q 127

sendJumpAndFireList3D

See also JumpAndFireList

sendJumpAndFireList3DSegment

Purpose
Sends binary 3-D JumpAddFireList as a deferred-execution named
segment to an SMC device session

Syntax

Uint sendJumpAndFireList3D (ushort numPoints,

float[] xCoord,

float[] yCoord,

float[] zCoord,

uint[] laserValue,

ushort outputMode,

ushort laserOnDelay,

ushort laserOnTime,

string segmentId)

Arguments

numPoints The number of data points in the list

xCoord An array of X coordinate values for the points in the
list. The array length is expected to be numPoints long.

yCoord An array of X coordinate values for the points in the

list. The array length is expected to be numPoints long.

zCoord An array of Z coordinate values for the points in the

list. The array length is expected to be numPoints long.

laserValue An array of laser values that are applied per the

outputMode setting. The array length is expected to
be numPoints long.

Session API

1040-0012 Revision Q 128

sendJumpAndFireList3DSegment

outputMode Specifies how to interpret laserValue[n]:

0 = Interpret laserValue[n] as a laser pulse-width pair
(laser-ticks)

1 = Interpret laserValue[n] as Analog Port 1 value (12-
bits)

2 = Interpret laserValue[n] as Analog Port 2 value (12-
bits)

3 = Interpret laserValue[n] as Digital power port value
(8-bits)

laserOnDelay Specifies the waiting period (in µsecs) before firing

after an incremental jump.

laserOnTime Specifies the duration that the laser is fired (in laser

ticks).

 segmentID Specifies the name of the segment

Comments

The value range of laserValue[n] is mode-dependent.

For outputMode = 0, the value represents individual pulse width settings
in laser ticks for LASER_MOD1 and LASER_MOD2. The LASER_MOD1
setting is specified in bits [15 – 0], and the LASER_MOD2 setting in bits [31
– 16]

For other settings of outputMode, the value is contained in the least-
significant 16-bits of the value.

The list is packaged into the named deferred execution segment and sent
to the SMC for later execution via a Sequence command.

See also JumpAndFireList, Structured Job Commands

MarkAbs

Description Moves the galvos to the absolute position with the laser on.

Session API

1040-0012 Revision Q 129

MarkAbs

Syntax
<MarkAbs>{FLT xCoordinate; FLT yCoordinate[; FLT
zCoordinate]}</MarkAbs>

Example <MarkAbs>-5000; 5000; 200</MarkAbs>

Arguments

xCoordinate X coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the X field size of the
system in floating point notation.

yCoordinate Y coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the Y field size of the
system in floating point notation.

zCoordinate Z coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -32768 – 32767 (bits)

Note: Depending on the unit selection, this value can
take on a range which represents the Z field size of the
system in floating point notation.

Session API

1040-0012 Revision Q 130

MarkAbsEx

Description

Moves the galvos to the absolute position with the laser on.

Note: This command differs from the MarkAbs command (above) in that
it permits values that exceed the 16-bit range of a normal scan head. This
command is used in large virtual-field MOTF applications.

Syntax
<MarkAbsEx>{FLT xCoordinate; FLT yCoordinate; FLT
zCoordinate}</MarkAbsEx>

Example <MarkAbsEx>-50000; -65000; 0</MarkAbsEx>

Arguments

xCoordinate X coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

yCoordinate Y coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zCoordinate Z coordinate of the end of a marking vector. Values are
floating point and are converted into system “bits” units
per the Units command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

Session API

1040-0012 Revision Q 131

MarkAbsList

Description
Move the galvos to each of the specified points in succession, at the
specified update interval, with the laser on. A Mark delay is inserted at
the end of the list.

Syntax

<MarkAbsList tick='{U16 tick}'>
 <Pt>{FLT X0; FLT Y0; FLT Z0}</Pt>
 <Pt>{FLT X1; FLT Y1; FLT Z1}</Pt>
 . . .

 <Pt>{FLT Xn; FLT Yn; FLT Zn}</Pt>

</MarkAbsList>

Example

<MarkAbsList tick='10'>
 <Pt>100; 215; 10</Pt>
 <Pt>110; 240; 30</Pt>
 <Pt>120; 250; 50</Pt>
 <Pt>130; 255; 60</Pt>
</MarkAbsList>

Arguments

tick The galvo command update interval (in µsecs)

Value range 10 - 65535

Xn X coordinate in a sequence of point coordinates that will
be written to the galvos at the rate specified by the tick
parameter. Values are floating point and are converted
into system “bits” units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

Yn Y coordinate in a sequence of point coordinates that will
be written to the galvos at the rate specified by the tick
parameter. Values are floating point and are converted
into system “bits” units per the Units command.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

Session API

1040-0012 Revision Q 132

MarkAbsList

Zn Z coordinate in a sequence of point coordinates that will
be written to the galvos at the rate specified by the tick
parameter. Values are floating point and are converted
into system “bits” units per the Units command.

Note: The Z coordinate is optional. If the Z coordinate is
not specified, the value of the Z coordinate is not
changed.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

MarkRel

Description
Moves the galvos to a position relative to the last commanded position
with the laser on.

Syntax <MarkRel>{FLT xOffset; FLT yOffset[; FLT zOffset]}</MarkRel>

Example <MarkRel>-355; 500; 10</MarkRel>

Arguments

xOffset X offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Value range -65535 - 65535

yOffset Y offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Value range -65535 - 65535

Session API

1040-0012 Revision Q 133

MarkRel

zOffset Z offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Note: The Z offset is optional. If the Z offset is not
specified, its relative move is set to zero.

Value range -65535 - 65535

MarkRelEx

Description

Moves the galvos to a position relative to the last commanded position
with the laser off.

Note: This command differs from the MarkRel command (above) in that it
permits values that exceed the 16-bit range of a normal scan head for
virtual field MOTF applications.

Syntax <MarkRelEx>{FLT xOffset; FLT yOffset[; FLT zOffset]}</MarkRelEx>

Example <MarkRelEx>-355; 500; 100</MarkRelEx>

Arguments

xOffset X offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Value range -231 - 231-1

yOffset Y offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Value range -231 - 231-1

Session API

1040-0012 Revision Q 134

MarkRelEx

zOffset Z offset used to calculate a marking vector relative to
the last commanded position. Values are floating point
and are converted into system “bits” units per the Units
command.

Note: The Z coordinate is optional. If the Z coordinate
is not specified, the value of the Z coordinate is not
changed.

Value range -231 - 231-1

6.5.4 LASER CONTROL PARAMETERS

LaserEnableDelay

Description
Sets the time required to enable the laser prior to marking. A default value
for this parameter can be set in the Laser Configuration file as parameter
LaserEnableDelay.

Syntax <set id='LaserEnableDelay'>{U16 delay}</set>

Example <set id='LaserEnableDelay'>10</set>

Arguments

delay The delay (in milliseconds) from the leading edge of
LASERENABLE to the leading edge of LASER_GATE

Value range 0 - 65535

LaserEnableTimeout

Description
Sets the time-out for LASERENABLE to de-assert. A default value for this
parameter can be set in the Laser Configuration file as parameter
LaserEnableTimeout.

Syntax <set id='LaserEnableTimeout'>{U16 timeout}</set>

Example <set id='LaserEnableTimeout'>20</set>

Session API

1040-0012 Revision Q 135

LaserEnableTimeout

Arguments

timeout The time-out (in milliseconds) from the trailing edge of
LASER_GATE to when LASERENABLE is de-asserted

Value range 0 - 65535

LaserFPK

Description
Sets the LaserFPK signal timing. A Default values for this parameter can
be set in the Laser Configuration file as parameter LaserFPK.

Syntax <set id='LaserFPK'>{FLT position; I16 length}</set>

Example <set id='LaserFPK'>-100; 10</set>

Arguments

position The delay (in laser timing ticks) from the leading edge of
LASER_GATE to the assertion of the LASER_MOD3 signal

Value range -32768 - 32767

length The duration (in laser timing ticks) of assertion of the
LASER_MOD3 signal

Value range 0 - 65535

LaserModDelay

Description
Sets the modulation delay of the laser. A default value for this parameter
can be set in the Laser Configuration file as parameter LaserModDelay.

Syntax <set id='LaserModDelay'>{U16 delay}</set>

Example <set id='LaserModDelay'>25</set>

Arguments

delay The delay (in laser timing ticks) from the leading edge of
LASER_GATE to the output of the first pulse on the
LASER_MOD1 signal

Value range 0 - 65535

Session API

1040-0012 Revision Q 136

LaserOffDelay

Description Sets the delay for turning off the laser when marking.

Syntax <set id='LaserOffDelay'>{U16 duration}</set>

Example <set id='LaserOffDelay'>100</set>

Arguments
duration Length of time (in µsecs) to delay

Value range 0 - 65535

LaserOnDelay

Description
Sets the delay for turning on the laser when marking relative to micro-
vector generation. A negative value means that LASER_GATE is asserted
before micro-vectoring begins.

Syntax <set id='LaserOnDelay'>{I16 duration}</set>

Example <set id='LaserOnDelay'>200</set>

Arguments

duration Length of time to delay (in µsecs) relative to the start of
micro-vectoring

Value range -32768 - 32767

LaserStandby

Description
Sets the standby settings of the laser. A default value for this parameter
can be set in the Laser Configuration file as parameter LaserStandby.

Syntax <set id='LaserStandby'>{U16 laserID; U16 width; U16 period}</set>

Example <set id='LaserStandby'>2; 10; 100</set>

Arguments

laserID Laser modulation signal identification

Value range 1 = LASER_MOD1

2 = LASER_MOD2

width The width of the laser modulation pulse (in laser timing
ticks) when the laser is ON.

Session API

1040-0012 Revision Q 137

LaserStandby

Value range 0 – 65535

Note: If the value is 0, no modulation will be emitted.

period The period of the laser modulation pulse train (in laser
timing ticks) when the laser is ON.

Value range 0 - 65535

Note: If the value is 0, no modulation will be emitted.

LaserPipelineDelay

Description

Set the time that all laser signals are time-shifted relative to the issuance
of galvo position commands. This delay is useful for compensating for
digital servo controllers that have an inherent processing delay time from
when the command input is applied to when the mirrors actually move.

Syntax <set id='LaserPipelineDelay'>{U16 delay}</set>

Example <set id='LaserPipelineDelay'>1500</set>

Arguments

delay The length of time (in µsecs) that all laser control signals
are time-shifted relative to micro-vectoring operations.

Value range 0 – 4000

Note: The value range is limited by the value of a laser
timing tick. The capacity of the pipeline is 4000 tick
elements.

Description

Sets the level of the laser power port. (Note: The LaserPower port may
be the 8-bit digital port or analog port 0 depending on the Laser
Configuration file setting of the Laser Power Port bit of the
LaserModeConfig word.)

Syntax <set id='LaserPower'>{U16 powerValue}</set>

Example <set id='LaserPower'>200</set>

Arguments
powerValue Setting of the laser power port (in bits). If the value is

different from the one in the last LaserPower command,
then the LaserPowerDelay delay is invoked.

Session API

1040-0012 Revision Q 138

Value range 0 - 255

LaserPowerDelay

Description
Sets the delay after changing the power setting. A default value can be
set in the Laser Configuration file as the parameter LaserPowerDelay.

Syntax <set id='LaserPowerDelay'>{U32 duration}</set>

Example <set id='LaserPowerDelay'>125</set>

Arguments

duration Length of time to delay after setting LaserPower or
executing WriteAnalog for port 0

Value range 0 - (232-1)/50

LaserPulse

Description Sets the laser ON pulse settings of the laser.

Syntax <set id='LaserPulse'>{U16 laserID; U16 width; U16 period}</set>

Example <set id='LaserPulse'>1; 50; 100</set>

Arguments

laserID Laser modulation signal identification

Value range 1 = LASER_MOD1

2 = LASER_MOD2

width The width of the laser modulation pulse (in laser timing
ticks) when the laser is ON

Value range 0 – 65535 laser ticks

Session API

1040-0012 Revision Q 139

LaserPulse

period If laserID is set to 1, this value controls the repetition
interval of the laser modulation pulse train (in laser
timing ticks) for both LASER_MOD1 and LASER_MOD2
when the laser is ON.

If laserID is set to 2, then this value sets the timing skew,
or delay between LASER_MOD1 and LASER_MOD2. If
the value is zero, then the two signals are in phase with
each other. If the value is set to ½ of the period value
used when laserID is 1, then the signals will be 180
degrees out of phase.

Note: For backward compatibility with the EC1000
behavior, the signals will be 180 degrees out of phase if
the period value is set to the same number when laserID
is 1 and 2.

Value range 0 – 65535 laser ticks

Note: If laserID is set to 2, then this value should be <
the value set when laserID is set to 1.

LaserTiming

Description
Sets the value of a laser timing "tick," which is the unit of measurement
for all laser timing values. A default value can be set in the Laser
Configuration file as the parameter LaserTiming.

Syntax <set id='LaserTiming'>{U16 value}</set>

Example <set id='LaserTiming'>50</set>

Arguments

value Number of 20ns clock period increments in a laser timing
"tick"

Value range 1 – 500

Session API

1040-0012 Revision Q 140

LaserModType

Description

Sets the behavior laser modulation synchronization feature. A default
value can be set in the Laser Configuration file by setting the Laser Sync
Mode bits in the parameter LaserModeConfig. Use of this command
effectively changes the setting those bits at run-time.

NOTE: This definition is different from the EC1000 and will result in
different behavior for the same settings.

Syntax <set id='LaserModType'>{U16 type}</set>

Example <set id='LaserModType'>1</set>

Arguments

type Laser synchronization method

Value
range

0 Asynchronous modulation. The laser modulation is
discontinuous, switching between the background
modulation and the lasing modulation coincident with the
LASER_GATE signal

1 Synchronous to the free-running modulation signal on
LASER_MOD3. LASER_MOD3 takes its modulation
settings from the background settings for LASER_MOD1.
The background signal for LASER_MOD1 and
LASER_MOD2 is set for no modulation. In this mode, the
LASER_GATE and subsequent LASER_MOD1 and
LASER_MOD2 timing is synchronized to the rising edge of
pulses on LASER_MOD3

2 Synchronous to the free-running modulation of
LASER_MOD2. In this mode the LASER_GATE signal is
synchronized to the falling edge of LASER_MOD2. Both
LASER_MOD1 and LASER_MOD2 are free-running
according to the LaserPulse settings defined for them.

3 Synchronous to the external signal source received on
LASER_STAT6. In this mode, the LASER_GATE and
subsequent LASER_MOD1 and LASER_MOD2 timing is
synchronized to the falling edge of pulses received on
LASER_STAT6.

Note: Synchronous modulation is useful for lasers that phase-
lock to an external frequency source.

Session API

1040-0012 Revision Q 141

6.5.5 LASER CONTROL COMMANDS

EnableLaser

Description Sets the laser active state.

Syntax <set id='EnableLaser'>{BOOL laserActiveState}</set>

Example <set id='EnableLaser'>TRUE</set>

Arguments

laserActive
State

The “enabled” or “disabled” state of the laser

Value
range

true The laser is enabled.

false The laser is disabled. (If this value is
selected, then the special pointer laser
mode is activated per the settings of
LaserModeConfig.)

LaserOn

Description Turns the laser on for the specified duration.

Syntax <LaserOn>{U32 duration}</LaserOn>

Example <LaserOn>1000</LaserOn>

Arguments
duration Length of time (in µsecs) to turn the laser on

Value range 1 - 232-1

LaserFire

Description
Turns the laser on for the specified duration and then pauses according to
the command processing wait mode.

Syntax <LaserFire>{U16 waitMode; U16 duration}</LaserFire>

Session API

1040-0012 Revision Q 142

LaserFire

Example <LaserFire>2; 1000</LaserFire>

Arguments

waitMode The command processing wait mode.

Value
range

0 Do not wait. Process the next command
immediately while lasing.

1 Wait until the laser starts firing. If a
LaserOnDelay value is set, command processing
is suspended until after that time.

2 Wait until complete. Command processing is
suspended until the laser turns off, including the
LaserOffDelay.

duration Length of time (in µsecs) to turn the laser on

Value
range

1 - 65535

LaserSignalOff

Description Turns the laser off immediately.

Syntax <LaserSignalOff></LaserSignalOff>

Example <LaserSignalOff></LaserSignalOff>

Arguments
N/A N/A

N/A N/A

LaserSignalOn

Description Turns the laser on immediately.

Syntax <LaserSignalOn></LaserSignalOn>

Session API

1040-0012 Revision Q 143

LaserSignalOn

Example <LaserSignalOn></LaserSignalOn>

Arguments
N/A N/A

N/A N/A

6.5.6 EXTERNAL I/O COMMANDS

WaitForIO

Description
Wait for the digital port value to be set. Job execution will pause until the
external signal is in the condition specified by the levelPolarity argument.

Syntax
<WaitForIO>{U16 portNum; U16 levelPolarity; U32 timeOut; U16
debounce }</WaitForIO>

Example <WaitForIO>2; 1; 100000; 5000</WaitForIO>

Arguments

portNumber Port identifier

Value range Port Port

0 START

1-4 AUX_GPI{1-4}_ISO

5 AUX_START_ISO

6 ABORT_ISO

7-13 LASER_STAT{0-6}_ISO

14 XY2_INPOS

15 AUX_XY2_INPOS

16-31 AUX_GPI{0-15}

levelPolarity Defines the state or transition of the signal when
triggering occurs.

Session API

1040-0012 Revision Q 144

WaitForIO

Value range 0 = LowLevel

1 = HighLevel

2 = RisingEdge

3 = FallingEdge

timeOut The wait is aborted if the time exceeds this value (in
µsecs). If set to 0, the wait is indefinite.

If a time-out occurs, an exception event is generated
and the WaitForIOTimeout error code returned.

Value range 0 - (232-1)/50

debounce Length of time (in milliseconds) to debounce the
external signal

Value range 1 - 65535

WriteAnalog

Description Sets the analog output port to a new value.

Syntax <WriteAnalog>{U16 PortNumber; U16 setting}</WriteAnalog>

Example <WriteAnalog>1; 344</WriteAnalog>

Arguments

portNumber Analog output port identifier

Value range 0 = Laser Power port (LASER_ANALOG0)

1 = Auxiliary Analog output port (LASER_ANALOG1)

setting New port value

Value range 0 - 4095

WriteDigital

Description Sets the digital output port to a new value.

Syntax <WriteDigital>{U16 portNumber; U16 setting}</WriteDigital>

Session API

1040-0012 Revision Q 145

WriteDigital

Example <WriteDigital>3; 1</WriteDigital>

Arguments

portNumber Port identifier

Port Association

0 AUX_JOBACTIVE

1-4 AUX_GPO1-4

5 AUX_LASING

6 AUX_READY

7 AUX_BUSY

16-31 Extended DOUT bits 0-15

100 System status ports as a group

101 Extended I/O ports as a group

102 8-bit digital power port

Value range See port numbers (above).

setting The new value for the port (as an unsigned 16-bit
integer)

Note: The actual signal polarity is determined by how
the optical isolators are connected.

Single bit mode (ports 0-31):

0 (unasserted) and 1 (asserted)

Group mode (ports 100-102)

0 (unasserted) and 1 (asserted) in bit positions defined
as follows:

Port Bits Signal

100 0-3 AUX_GPO1-4

 4-7 AUX_LASING, AUX_BUSY, AUX_READY,
AUX_JOBACTIVE

101 0-15 Extended DOUT bits 0-15

102 0-7 Laser digital bits 0-7

Value range 0 - 65535

Session API

1040-0012 Revision Q 146

6.5.7 UTILITY COMMANDS

ApplicationEvent

Description

Defines an application event.

Note: Application events are used to notify the application that a certain
point in the execution of the job has been reached. Events are handled by
the application using the OnMessageEvent method.

Application events should be used sparingly as system performance could
be affected if they are generated at a high rate.

Syntax <ApplicationEvent>{U16 param1; U32 param2}</ApplicationEvent>

Example <ApplicationEvent>100; 345</ApplicationEvent>

Arguments

param1 First application-specific parameter. Value is returned in
OnMessageEvent puiPayloadHigh[31..16].

Value range 0 - 65536

param2 Second application-specific parameter. Value is returned
in OnMessageEvent puiPayloadLow[31..0]

Value range 0 - 232-1

BeginJob

Description

Generates a BeginJob application event when executed by the marking
engine. The JobDataCntr parameter in the StatInfoData broadcast packet
is re-initialized to zero. BeginJob automatically sets the system BUSY
signal.

Syntax <BeginJob></BeginJob>

Example <BeginJob></BeginJob>

Arguments

N/A N/A

Value
range

N/A

Session API

1040-0012 Revision Q 147

EndJob

Description
Generates an EndJob application event when executed by the marking
engine. The system BUSY and MARKINPROG signals are automatically
cleared.

Syntax <EndJob></EndJob>

Example <EndJob></EndJob>

Arguments

N/A N/A

Value
range

N/A

GalvoCmdMarker

Description
Inserts a marker into the Lightning II command stream via the GSBus. The
marker can be used to synchronize Lightning II probe data collection

Syntax <GalvoCmdMarker></GalvoCmdMarker>

Example <GalvoCmdMarker></GalvoCmdMarker>

Arguments

N/A N/A

Value
range

N/A

JobDataCntr

Description

Sets the job data counter to the specified value.

Note: The job data counter is incremented as each 32-bit data element of
the job stream is processed by the marking engine. This is useful for
tracking how much data the marking engine has processed at any given
time. The current value of the counter is reported in the System Status
broadcast data as element name JobDataCntr.

Syntax <JobDataCntr>{U32 value}</JobDataCntr>

Session API

1040-0012 Revision Q 148

JobDataCntr

Example <JobDataCntr>0</JobDataCntr>

Arguments
value Counter value

Value range 0 (only accepts zero for now)

JobMarker (Obsolete)

Description

Generates an Application Event of the type MarkProgress and/ or
CycleProgress as the job progresses. The current JobMarker data value is
also available in the broadcast status data JobMarker element.

Note: The Application Events generated by this command are typically
used to track job execution progress.

Syntax <JobMarker>{U16 value}</JobMarker>

Example <JobMarker>35</JobMarker>

Arguments

value An encoded, application-defined marker value. Bits[7..0]
encode the MarkProgress, and Bits[14..8] encode the
CycleProgress. The marker value is sampled every
200msec by the SMC. If the value changes within this
interval, an ApplicationEvent will be generated.

If bit[15] of the most recent JobMarker value is set, a
MarkProgress message will be generated. Otherwise, a
CycleProgress message will be generated.

The corresponding JobMarker field data—right-shifted in
the case of a CycleProgress message—will be returned in
the puiPayloadLow value of the OnMessageEvent.

Value range 0 - 65535

JobTimer

Description

Controls the state of the hardware job timer. Used to time actual
execution time of a job. The last saved timer value is returned as the
JobTimer value in the XML data packet returned when using the
GetRegisters priority message.

Session API

1040-0012 Revision Q 149

JobTimer

Syntax <JobTimer>{U16 action}</JobTimer>

Example <JobTimer>1</JobTimer>

Arguments

action Controls the state of the timer logic.

Value range 0 = Clear the timer but do not count

1 = Start or continue the timer

2 = Stop or pause the timer

3 = Save the timer (a snap-shot of the timer is taken for
readback)

LongDelay

Description Delays all operations for the specified duration.

Syntax <LongDelay>{U32 duration}</LongDelay>

Example <LongDelay>10000</LongDelay>

Arguments
duration Length of time to sleep (in µsecs)

Value range 0 - (232-1)/100 → (0 - 42,949,672)

Set

Description Sets the named parameter to the specified value.

Syntax <Set id='{STR parameter}'>{value(s)}</set>

Example <Set id='MarkSpeed'>10; 2</set>

Arguments

parameter The name of the parameter to be set

Value range Any valid parameter name

value(s) The number of arguments is specific to the named
parameter.

Session API

1040-0012 Revision Q 150

Set

Value range The values of the argument(s) is specific to the named
parameter.

6.5.8 COORDINATE SYSTEM TRANSFORM PARAMETERS

ActiveCorrectionTable

Description Sets the active current correction table.

Syntax <set id='ActiveCorrectionTable'>{U16 table}</set>

Example <set id='ActiveCorrectionTable'>1</set>

Arguments

table Identifies the correction table to be used

Value range 1 – 4, 257- 260

Note: Only Tables 1 and 2 should be selected during job
execution. Tables 3 and 4 are used only for loading
alternate data for the XY2-100 interface and for GSBus
channels 3 - 5. See Figure 28 - Multiple Correction Table
Usage in the SMC on page 295 for more details.

Note: The secondary values 257 – 260 are used to
indicate that correction table data being sent to the
controller using a subsequent sendStreamData method
is either 20-bit (for EC1000 platforms with 20-bit
firmware) or 24-bit for the SMC. This represents setting
the 0x100 bit in the table value. Setting this bit is only
necessary when sending a table using sendStreamData(),
not when switching between tables at run-time.

FieldOffset

Description

Sets the offsets to be applied to vectors at run-time. These offsets are
integrated into the position commands during micro-vector operations.
These values override the offsets specified in the UserConfig and
LensConfig files.

Session API

1040-0012 Revision Q 151

FieldOffset

Syntax <set id='FieldOffset'>{FLT xOffset; FLT yOffset; FLT zOffset}</set>

Example <set id='FieldOffset'>5000; -1000; 100</set>

Arguments

xOffset Offset to be applied to the X vector at run-time.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

yOffset Offset to be applied to the Y vector at run-time.

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zOffset Offset to be applied to the Z vector at run-time.

Note: The Z offset is optional. If the Z offset is not
specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

FieldOrientation

Description
Sets the orientation of the marking field relative to the vector coordinate
system. This transformation is applied at run-time. This value overrides
the Rotation setting contained in the UserConfig file.

Syntax <set id='FieldOrientation'>{U16 rotation}</set>

Example <set id='FieldOrientation'>90</set>

Arguments

rotation Specifies the counter-clockwise rotation of the marking
field in degrees.

Value range 0, 90, 180, 270

Session API

1040-0012 Revision Q 152

Offset

Description
Sets the offsets to be applied to the vector set before being passed to the
SMC. These offsets are integrated in to the job data as it is being
compiled. A saved job will have these offsets built into it.

Syntax <set id='Offset'>{FLT xOffset; FLT yOffset; FLT zOffset}</set>

Example <set id='Offset'>1000; 2000; 100</set>

Arguments

xOffset Offset in bits to be applied to the X vector at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

yOffset Offset in bits to be applied to the Y vector at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zOffset Offset in bits to be applied to the Z vector at run-time.

Note: The Z offset is optional. If the Z offset is not
specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

HeadOffset

Description Set offsets on a per-scanhead basis.

Syntax
<set id='HeadOffset'>{U16 headID, FLT xOffset; FLT yOffset [; FLT
zOffset]}</set>

Example <set id='HeadOffset'>0; 1000; 2000; 100</set>

Session API

1040-0012 Revision Q 153

HeadOffset

headID Scanhead number to apply the offset values to

Value range 0 - 1

xOffset Offset in units to be applied to the specified scanhead X
axis at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

yOffset Offset in units to be applied to the specified scanhead Y
axis at run-time.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zOffset Reserved for future use. Offset in units to be applied to
the specified scanhead Z axis at run-time.

Note: The Z offset is optional. If the Z offset is not
specified, it is set to zero.

Value range 231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

Transform

Description
Sets the values of the coordinate transform matrix to be applied to the
vector set before being passed to the SMC.

Syntax <set id='Transform'>{FLT M00; FLT M01; FLT M10; FLT M11}</set>

Example <set id='Transform'>1.0; 0.0; 0.0; 1.0</set>

Session API

1040-0012 Revision Q 154

Transform

Arguments

M00 –
M11

Represents the four transformation matrix elements

(
𝑋′
𝑌′
𝑍′

) = (
𝑀00 𝑀01 0
𝑀10 𝑀11 0
0 0 1

)(
𝑋
𝑌
𝑍
)

Value
range

Any floating point value

TransformEnable

Description
Enables or disables run-time coordinate transformations using the
transform selected by the ID argument. The transform information is
specified using the Priority data message SetRTJobTransform2D.

Syntax <Set id='TransformEnable'>{U16 transformID}</Set>

Example <Set id='TransformEnable'>1</Set>

Arguments

transformID Enables a specific run-time coordinate transformation or
disables all
run-time coordinate transformations.

Value range 0 = All run-time coordinate transformations are disabled

1 = Use transform ID 1

2 = Use transform ID 2

RTCCompatibility

Description

Enables or disables coordinate system compatibility with the Scanlab RTC
controller family. Enabling RTC compatibility causes the X and Y axes to be
swapped after the correction table calculations are done, effectively
causing the field to rotate 90 degrees counter-clockwise. If the Scanlab
mode is used, then Scanlab .ctb correction files can be used directly via
the session method sendCorrectionData.

Syntax <Set id='RTCCompatibility'>{BOOL state}</Set>

Example <Set id='RTCCompatibility'>true</Set>

Arguments state Specifies the “enabled” or “disabled” state

Session API

1040-0012 Revision Q 155

RTCCompatibility

Value
range

true = Coordinate system compatibility with the Scanlab
RTC controller family is enabled.

false = Coordinate system compatibility with the Scanlab
RTC controller family is disabled.

HeadTransform

Descriptio
n

Sets the values of the coordinate transform matrix to be applied to each head’s
command data prior to the correction table. This transform operates on micro-vector
data. Both heads can have separate transforms.

Syntax <set id='HeadTransform'>{U16 headID, FLT M00; FLT M01; FLT M10; FLT M11}</set>

Example <set id='Transform'>1.0; 0.0; 0.0; 1.0</set>

Argument
s

headID Scanhead number to apply the offset values to

Value range 0 - 1

M00 – M11 Represents the four transformation matrix elements

(
𝑋′
𝑌′
𝑍′

) = (
𝑀00 𝑀01 0
𝑀10 𝑀11 0
0 0 1

)(
𝑋
𝑌
𝑍
)

Value range Any floating point value within this range:

Value > -2.0 and Value < 2.0

6.5.9 HARDWARE INTERFACE CONFIGURATION PARAMETERS

These configuration parameters are set in the configuration files stored on the SMC and automatically

applied at power-up. They are available here to permit overriding those settings.

SMCInsGenMode

Description Sets the method for computing galvo path trajectories.

Session API

1040-0012 Revision Q 156

SMCInsGenMode

Syntax <set id='SMCInsGenMode'>{U16 mode}</set>

Example <set id='SMCInsGenMode'>0</set>

Arguments

mode The trajectory planning method used at run-time to
create marks and jumps

Value range 0 – Traditional Mode velocity step trajectories

1 – ScanPack mode acceleration/jerk limited
trajectories. Limited to use with SMAPI only.

AxisDACConfig (Obsolete)

Description

Sets the analog command output configuration for the laser galvo servo
controllers using a bitmask.

Note: This is normally set in the Controller Configuration file, but can be
overridden with this command.

Syntax <set id='AxisDACConfig'>{HEX bitmask}</set>

Example <set id='AxisDACConfig'>0x6</set>

Arguments

bitmask Bitmask which defines analog output configuration

Value range The mask is defined as follows:

Bits 1..0 encode the range of the X & Y DACs.

Bits 3..2 encode the range of the Z DAC.

The single-ended voltage range encoding is as follows:

 00 = ±2.5V, 01 = ±5V, 10 = ±10V

LaserModeConfig

Description
Sets the laser configuration bitmask. A default value can be set in the
Laser Configuration file as the parameter LaserModeConfig.

Syntax <set id='LaserModeConfig'>{HEX bitmask}</set>

Session API

1040-0012 Revision Q 157

LaserModeConfig

Example <set id='LaserModeConfig'>0x1FF</set>

Arguments

bitmask Bitmask which defines the laser configuration

Value
range

The bit definitions for the bitmask are shown below.

Session API

1040-0012 Revision Q 158

LaserModeConfig

Name Hex Bit
Value

Definition

LASER_GATE polarity 0x0001 0=active high,

1=active low

LASER_POINTER polarity 0x0002 0=active high,

1=active low

Laser Sync Mode Bit 0 0x0004 See notes below

LASER_MOD1 polarity 0x0008 0=active high,

1=active low

LASER_MOD2 polarity 0x0010 0=active high,

1=active low

LASER_MOD3 polarity 0x0020 0=active high,

1=active low

LASER_ENABLE polarity 0x0040 0=active high,

1=active low

LASER_DOUT polarity 0x0080 0=active high,

1=active low

Laser activate 0x0100 1=activate (enable)
laser output signals

Laser Power Port mode 0x0200 Set the mode of the
digital laser power port

0=8-bit mode, 1=7-bit
mode (LSB used as
strobe)

LASER_POINTER
configuration

0x0400
&

0x0800

Sets the mode of
operation of
LASER_POINTER

Session API

1040-0012 Revision Q 159

LaserModeConfig

0 - LASER_POINTER ==
NOT LASER_GATE

1 - LASER_POINTER ==
LASER_GATE AND NOT
LasersEnabled

2 - LASER_POINTER ==
NOT LasersEnabled

3 - LASER_POINTER ==
Asserted all of the time

Laser Power Port 0x1000 0=8-bit digital power
port, 1=analog output
A1

LASER_GATE
configuration

0x2000 0=Gating signal,

1=Modulation signal if
8-bit digital power port
bit 7 is also set.

LASER_GATE inhibit 0x4000 0=normal operation,

1=LASER_GATE is
suppressed when the
laser is turned on but
the modulation signal
is still emitted. Use in
synchronous laser
operation during
JumpAndFireList
commands.

Laser Sync Mode Bit 1 0x8000 See notes below.

Notes on Laser Sync Mode:

Laser Sync Mode bits [1 – 0] encode the laser synchronization
mode of the SMC according to the following table:

Session API

1040-0012 Revision Q 160

LaserModeConfig

0 = Asynchronous modulation. The laser modulation is
discontinuous, switching between the background
modulation and the lasing modulation coincident with
the LASER_GATE signal

1 = Synchronous to the modulation signal on
LASER_MOD3. LASER_MOD3 takes its modulation
settings from the background settings for
LASER_MOD1. The background signal for
LASER_MOD1 and LASER_MOD2 is set for no
modulation. In this mode, the LASER_GATE and
subsequent LASER_MOD1 and LASER_MOD2 timing is
synchronized to the rising edge of pulses on
LASER_MOD3

2 = Synchronous to the free-running modulation of
LASER_MOD2. In this mode the LASER_GATE signal is
synchronized to the falling edge of LASER_MOD2.
Both LASER_MOD1 and LASER_MOD2 are free-
running according to the LaserPulse settings defined
for them.

3 = Synchronous to the external signal source received on
LASER_STAT6. In this mode, the LASER_GATE and
subsequent LASER_MOD1 and LASER_MOD2 timing is
synchronized to the rising edge of pulses received on
LASER_STAT6.

ServoConfig

Description Sets the configuration of the servo control interface.

Syntax <set id='ServoConfig'>{HEX value}</set>

Example <set id='ServoConfig'>0x1</set>

Arguments

value This value defines the active interface type for SMCs
configured to use NVL-100 compatibile firmware. The
firmware can be configured to activate either NVL-100, XY2-
100 or SL2-100 protocol on the SMC J11 connector.

Session API

1040-0012 Revision Q 161

ServoConfig

Value
range

The selection values are shown below.

Value Interface

0 NVL-100

1 XY2-100

2 SL2-100

6.5.10 BIT-MAP RASTER SUPPORT

Bit-map raster rendering can be performed in four different modes depending on the level of quality

and throughput required. Two “fire-on-the-fly” modes and two “step-and-shoot” modes are

supported. These modes are illustrated in the following figures that show the relative galvo motion

and laser modulation control.

Mode 0: Variable Pulse Width "Fire-on-the-fly"

Mode 0 raster patterning can use 8-bit per pixel data or 1-bit per pixel data depending the laser in use

and the pixel data rate that is desired. Eight bits per pixel data permits gray-scale imaging when the

laser supports variable laser power as a function of how long the laser modulation signal remains on.

This is typical of how CO2 lasers operate. In this illustration, the “high” pulse-width is proportional to

an 8-bit gray-scale pixel value. Since the laser fires at a constant rate and the start of the galvo position

commands and the start of the lasing process is tightly controlled, the start of each pixel position is

accurately placed on the substrate.

Mode 0 can also use 1 bit per pixel data along with error-diffusion dithering gray-scale approximation

approaches to create gray-scale images when using Q-Switched lasers. The laser timing can be

configured to run in two modes:

• The gate is asserted for the entire raster line and the modulation pulse corresponds to the

pixel value. This is referred to gated triggering mode.

• The modulation is continuous and the gate is selectively asserted according to the pixel value

In the first mode, a “0” pixel value will inhibit the emission of a pulse, thus skipping the firing of the

laser at that pixel location. Likewise, a “1” pixel value will emit a pulse that will cause the laser to fire

at that location. This mode is typically used with pulse on demand capable lasers

Session API

1040-0012 Revision Q 162

In the second mode pulses are emitted continuously. A “0” pixel value will inhibit the assertion of the

gate, thus inhibiting the firing of the laser at that pixel location. Likewise, a “1” pixel value will assert

the gate synchronous with the continuously emitted pulse stream that will cause the laser to fire at

that location. This mode is typically used with lasers that can phase-lock to an external time base.

Using 1-bit per pixel data permits pixel patterning rates of up to 12.5MHz if the laser can support it. It

is the mode of operation used with polygon scanning but is supported with galvo scanning as well.

Because of the high speed and precision requirements when this mode is used, the time base for laser

control is fixed at 10nsec. This is different from 8-bit per pixel mode which uses a user specifiable time

base referred to as a laser tick. A laser tick can be specified as a multiple of 20nsec intervals using the

LaserTiming command.

Session API

1040-0012 Revision Q 163

Pixel Clock
(internal)

LASER_GATE1

LASER_MOD1

LASER_GATE2

LASER_MOD2

Td1

Tp2

Td2

Tp

Modulation Mode 0: Gated triggering

Tp = Pixel Period. Dependent on polygon speed and output DPI. Internally calculated.
Tg1 & Tg2 = Pixel Gate signal. Starts after Pixel Clock. Recommend length be specified as % of pixel period. May be made
 continuous if 100% of Pixel Period.
Tp1 & Tp2 = Laser Trigger Pulse. Supressed if pixel value == 0. Recommend length be specified as % of Pixel Gate length
Td1 & Td2 = Laser Trigger Pulse Delay. Units of Nano Seconds rounded up/down to nearest 10 Nano Seconds.

Pixel Data

Suppressed

Suppressed

Tg1

Tp1

Tg2

Pixel value = 1 Pixel value = 0

Figure 4 - “FIRE-ON-THE-FLY”, MODE 0, ONE BIT PER PIXEL GATED TRIGGERING

Session API

1040-0012 Revision Q 164

Pixel Clock

LASER_GATE1

LASER_MOD1

LASER_GATE2

LASER_MOD2

Td1

Tp2

Td2

Modulation Mode 1 – Continuous triggering with selective gating

Tp = Pixel Period. Dependent on polygon speed and output DPI. Internally calculated.
Tg1 & Tg2 = Pixel Gate signal. Starts after Pixel Clock. Suppressed if pixel value == 0. Recommend length be
specified as % of pixel period
Tp1 & Tp2 = Laser Trigger Pulse. Always present. Recommend length be specified as % of Pixel Gate length
Td1 & Td2 = Laser Trigger Pulse Delay. Units of Nano Seconds rounded up/down to nearest 10 Nano Seconds.

Pixel Data

Suppressed

Suppressed

Tg1

Tg2

Tp1

Tp

Pixel value = 1 Pixel value = 0

Figure 5 - “FIRE-ON-THE-FLY”, MODE 0, ONE BIT PER PIXEL CONTINUOUS TRIGGERING WITH SELECTIVE GATING

Session API

1040-0012 Revision Q 165

MODE 0 – Constant pixel width, variable pulse duration

Vector motion

Pulse width == PixelMap[n]
n == gray-scale value, 0 <= n <= 255

Laser ON Delay

<set id=’LaserOnDelay’>delay</set>

LASER_GATE

LASER_MOD1

Pulse period == Period
<set id=’LaserPulse’>1, 0, Period</set>

Laser OFF Delay

Laser fires here

P0 P1 P2 Pn

Figure 6 - “FIRE-ON-THE-FLY”, MODE 0, EIGHT BITS PER PIXEL

Mode 1: Variable Power “Fire-on-the-fly”

Mode 1 raster patterning permits gray-scale imaging when the laser supports variable laser pulse

power as a function of variable analog or digital laser power control. In this illustration, the laser power

control is set proportional to an 8-bit gray-scale value at the beginning of a pixel period, and the laser

fires at the end of the period on each rising edge of the laser modulation signal. The pulse width of

the laser modulation signal is programmable and stays the same for each pixel in the pixel line. Since

the laser fires at a constant rate and the start of the galvo position commands and the start of the

lasing process are tightly controlled, the pixels positions are accurately placed on the substrate.

Session API

1040-0012 Revision Q 166

MODE 1 – Constant pixel width & pulse duration, variable power output

Laser fires here

Vector motion

LASER_DATA, LASER_ANALOG0 or

LASER_ANALOG1 == PixelMap[n]
n == gray-scale value, 0 <= n <= 255

Set port using: <set id=’RasterParams’>port</set>

Pulse width == Width

<set id=’LaserPulse’>1, Width, Period</set>

P0

P1

P3

Pn

LASER_GATE

LASER_MOD1

Pulse period == Period

<set id=’LaserPulse’>1, Width, Period</set>

Laser OFF Delay
Laser ON Delay

<set id=’LaserOnDelay’>delay</set>

Figure 7 - “FIRE-ON-THE-FLY”, MODE 1

Standard Jump-and-fire Raster Mode

Jump-and-fire raster patterning permits very accurate gray-scale imaging with most CO2 lasers, and

gray-scale approximations using pulsed YAG lasers. For CO2 lasers, gray scale is achieved by controlling

the pulse width of the modulation signal when the laser fires at a pixel location. The galvos are

instructed to jump to each pixel location, a LaserOnDelay time is incurred to let the galvos settle, and

then the laser fires for the specified LaserOnTime. One or several pulses may be emitted at each pixel,

depending on the pulse period specified with the <set id='LaserPulse'> command.

If the LaserPulse period is set to be the same as the LaserOnTime, then a single pulse will be emitted

at each pixel. With fast CO2 lasers, this provides variable laser power proportional to the pulse width.

For pulsed YAG lasers used to expose single dots per pixel using error diffusion methods, the pulses

can be suppressed with a pulse-width value of zero, or fired with an appropriate non-zero value.

Session API

1040-0012 Revision Q 167

Since the galvos jump to each pixel location and stop there before firing, very precise pixel placement

is achieved regardless of the scanning direction. Precision can be increased by lengthening the

LaserOnDelay parameter but at the cost of some speed.

LASERON time == lon-time

LaserOnDelay

P0 P1 P2 Pn

LASER_GATE

Standby modulation

LASER_MOD1 ON Modulation

Pulse width == pulse-widthn

Pulse period set with the

<set id=’LaserPulse’> command

LASER_MOD1

Raster operation using Jump and Fire List

P0 pos

P1 pos

P2 pos

Pn pos

Galvo motion (Unstructured Jumps)

Pn pos ==

<Pt> Xn, Yn, Zn, pulse-widthn <Pt>

Syntax:

<JumpAndFireList LaserOnTime=’lon-time’ LaserOnDelay=’lon-delay’>

 <Pt> X0, Y0, Z0, pulse-width0 </Pt>

 <Pt> X1, Y1, Z1, pulse-width1 </Pt>

 <Pt> X2, Y2, Z2, pulse-width2 </Pt>

 …

 <Pt> Xn, Yn, Zn, pulse-widthn </Pt>

</JumpAndFireList>

Figure 8 - STANDARD “JUMP-AND-FIRE” MODE

Synchronous Fiber Laser Jump-and-Fire Raster Mode

Some new fiber lasers require continuous modulation to which the laser firing circuitry phase-locks.

Firing the laser requires the assertion of the LASER_GATE signal in precise timing relationship to a

constantly emitted pulse train. Other similar lasers require that the modulation sequence be provided

by the laser and that pulses "picked" when the laser is intended to fire. Both modes of operation are

supported by the SMC.

Session API

1040-0012 Revision Q 168

Setting the Laser Sync Mode [1 – 0] bits to the value 2 using the job command <set

id=LaserModeConfig> causes the SMC hardware to change its laser control behavior to constantly emit

laser pulses on the LASER_MOD1 signal according to the <set id='LaserPulse'> parameters. All

subsequent laser and galvo operations are then synchronized to the pulse train. If however the Laser

Sync Mode [1 – 0] bits are set to the value 3, then the pulse stream is taken from the SMC LASER_STAT6

digital input. This permits synchronization to lasers that create their own pulse generating signal.

In the JumpAndFireList command, the OutputMode attribute selects how to use the pixel value. By

default, the laser pulse-width is changeable on a pixel-by-pixel basis with a special case for a pixel value

of zero. For non-zero pixel values, the pulse width is set to the pixel value (in laser-ticks) and the

LASER_GATE signal is asserted for the time (in laser-ticks) specified by the LaserOnTime attribute of

the JumpAndFireList command. If the pixel value is zero, then the LASER_GATE signal is suppressed

during the LaserOn interval. Even though the LASER_GATE signal is suppressed, the LaserOnDelay and

LaserOnTime intervals are present resulting in a consistent pixel time. The overall result is that the

laser can retain phase-lock and be selectively fired on a pixel-by-pixel basis.

The OutputMode attribute can specify any of the following alternate targets for the pixel data:

• 0 = pulse-width (default)

• 1 = LASER_ANALOG0 (analog power port)

• 2 = LASER_ANALOG1

• 3 = LASER_DATA (digital power port)

In the case of the analog output ports, 12 bits of resolution are supported, whereas only 8 bits are

supported for the digital power port. In these non-default output modes, the pixel data is applied to

the port after the jump but before the LaserOnDelay attribute value is applied. After the LaserOnDelay,

the laser will fire per the settings specified by the <set id='LaserPulse'> command, but synchronous

with the next pulse in the pulse-train. If LaserModSyncSrc is Int, then the LASER_GATE signal will be

synchronous with the leading edge of the next pulse. If LaserModSyncSrc is Ext, then the LASER_GATE

signal will be synchronous with the falling edge of the LASER_STAT6_ISO signal.

Session API

1040-0012 Revision Q 169

LASERON time == lon-time

LaserOnDelay

LASER_GATE signal

(suppressed if pulse-widthn == 0

Leading edge synchronized with pulse)

LASER_MOD1 signal

(continuous modulation

Pulse width == pulse-widthn

Pulse period set with the

<set id=’LaserPulse’> command)

Synchronous modulation raster operation using

Jump and Fire List

P0 pos

P1 pos

P2 pos

Pn pos

Galvo motion (Unstructured jumps)

Pn pos ==

<Pt> Xn, Yn, Zn, pulse-widthn <Pt>

Syntax:

<set id=’LaserSyncType’>1</set>

<set id=’LaserModDelay’>5</set>

<set id=’LaserPulse’>1, pulse-width, pulse-period</set>

<JumpAndFireList LaserOnTime=’lon-time’ LaserOnDelay=’lon-delay’>

 <Pt> X0, Y0, Z0, pulse-width0 </Pt>

 <Pt> X1, Y1, Z1, pulse-width1 </Pt>

 <Pt> X2, Y2, Z2, pulse-width2 </Pt>

 …

 <Pt> Xn, Yn, Zn, pulse-widthn </Pt>

</JumpAndFireList>

P1 (PW != 0)

P2 (PW == 0)

LASER_GATE

not asserted,

prior PW

retained Pn (PW != 0)

LaserModDelay

P0 (PW != 0)

Figure 9 - SYNCHRONOUS “JUMP-AND-FIRE” MODE

6.5.11 BIT-MAP RASTER COMMANDS

Raster operations are defined through the use of the commands defined in the following section

(“Bit-Map Raster Parameters and Commands”). These commands can be freely placed anywhere in a

job.

The API supports a pixel mapping table that permits non-linear mapping of 8-bit pixel values to the

appropriate laser control values required by the selected mode. This permits a linear range of gray-

scale pixel values to scale into a range that is appropriate for the behavior of the laser and materials

being used.

Session API

1040-0012 Revision Q 170

Bit-Map Raster Parameters and Commands

RasterMode

Description Selects the mode of raster operation.

Syntax <set id='RasterMode'>{U16 mode}</set>

Example <set id='RasterMode'>1</set>

Arguments

mode raster mode

Value range 0 = Variable Pulse Width "Fire-on-the-fly"

1 = Variable Power "Fire-on-the-fly"

RasterPixelDepth

Description
Selects the pixel depth. Values in the PixelLine are interpreted differently

depending on the depth.

Syntax <set id= RasterPixelDepth >{U16 depth}</set>

Example <set id= RasterPixelDepth >1</set>

Arguments

depth Pixel depth mode

Value range 0 = 8-bits per pixel encoding

1 = 1-bit per pixel encoding

Session API

1040-0012 Revision Q 171

RasterModulationMode

Description Selects the mode of 1 bit per pixel raster operation.

Syntax <set id= RasterModulationMode >{U16 mode}</set>

Example <set id= RasterModulationMode >1</set>

Arguments

mode Modulation Mode

Value range 0 = Normal mode – Gated triggering

1 = Continuous mode – Continuous triggering with

selective gating

PixelMap

Description Sets the values of the pixel mapping table.

Syntax <set id='PixelMap'>{U16 PM0; U16 PM1; … U16 PM255}</set>

Example <set id='PixelMap'>0; 1; 2; ... 255</set>

Arguments

PMn 256 entries are used to form a table that is indexed by
the actual gray-scale pixel value specified in a RasterLine
command. The table value indexed by the gray-scale
pixel value represents the variable part of laser control
system per the selected raster mode.

Mode Table value interpretation

 0 Laser ON pulse width

 1 Laser power control

Value range 0 - 255

RasterParams

Description
Sets mode-specific parameters.

NOTE: The definition has been expanded to include using Raster Mode 0.

Session API

1040-0012 Revision Q 172

RasterParams

Syntax <set id=’RasterParams’>{U16 param}</set>

Example <set id=’RasterParams’>1</set>

Arguments

param Raster Mode Parameter Selection

0 Pixel period in laser ticks if Pixel depth is
8 bits per pixel. Pulse period in multiples
of 10nsec if Pixel depth is 1 bit per pixel.

1 Pixel output port selection
0 = LASER_ANALOG0
1 = LASER_ANALOG1
2 = LASER_DATA (8-bit digital port)

Value
range

0 - 65535

RasterLine

Description Specifies the data and trajectory of a raster line.

Syntax
<RasterLine X=’{FLT xDest}’ Y=’{FLT yDest}’ Z=’{FLT zDest}>{U8 P0; U8 P1;
… U8 Pm}</RasterLine>

Example <RasterLine X=’10000’ Y=’0’ Z=’0’>25;15;44;0;0;33;34, ...</RasterLine>

Arguments

xDest
yDest
zDest

X, Y, Z coordinate of the end of the raster line. Values are
floating point and are converted into system “bits” units
per the Units command.

Value
range

-231 - 231-1

Note: Depending on the unit selection, these values can
take on a range which represents the X, Y, Z virtual field
size of the system in floating point notation.

Session API

1040-0012 Revision Q 173

RasterLine

P0 - Pn If the Pixel depth is 8 bits per pixel, this is a list of 8-bit
pixel values to be exposed along the line. The values are
used to index the PixelMap table to fetch an actual laser
power level control that will be set at each pixel location.
A maximum of 65535 pixels per line can be specified.

If the Pixel depth is 1 bit per pixel, each entry represents 8
pixel values. The least significant bit is emitted first,
working right to left to the most significant bit.

Value
range

0 - 255

LaserModDelay

Description
Sets the modulation delay of the laser. A default value for this parameter can be set in

the Laser Configuration file as parameter LaserModDelay.

Syntax <set id='LaserModDelay'>{U16 delay1InNsec},{U16 delay2InNsec}</set>

Example <set id='LaserModDelay'>30,90</set>

Arguments

delay The delay (in nano seconds) from the leading edge of LASER_MOD1 and

LASER_MOD2 to the output of the first pulse on the LASER_GATE1 and

LASER_GATE2 signals respectively.

Value range Within range of pulse period which is calculated by a device

configuration file.

6.5.12 POLYGON BIT-MAP RASTER COMMANDS

Polygon raster operations are defined through the use of the commands defined in the following

section (“Polygon Bit-Map Raster Parameters and Commands”). These commands can be freely placed

anywhere in a job after calculating parameters based on a polygon device configuration file.

Because of the high rates of speed in a polygon system, marking is performed by firing (or not) a single

laser pulse at each pixel location. Laser power control is static for the entire pixel line. The

file:///C:/Source/source-a/Documentation/trunk/SMC/Manuals/SMC%20Software%20Reference%20Manual%20-%20Copy.docx%23LaserModDelayR2Table

Session API

1040-0012 Revision Q 174

implementation uses 1 bit per pixel Raster Mode 0 where pixels are fired on-the-fly, but without pixel-

level power control.

To create the fire (or not) pixel data, the 8-bit pixel data specified in the raster line represents a packed

value of 8 pixels, one bit per pixel. The least significant bit is emitted first, working right to left to the

most significant bit. Sequences of four RasterLine pixel values are processed together to form a 32-

pixel entity. A complete raster line should contain a multiple of four pixel entries. The API will pad

with non-firing pixel data at the end of the line if insufficient pixel entries are provided.

Gray-scale approximation can be accomplished by using error diffusion dithering techniques at the

application level. This capability is not directly supported by this API.

Polygon Bit-Map Raster Parameters and Commands

Polygon operations require precise synchronization of the polygon position, corrective galvo

operation, and laser modulation. The following diagram shows the relevant timing relationships.

Session API

1040-0012 Revision Q 175

Polygon Index Pulse

Polygon SOS Pulse

Facet Count (logic & FW)

Work Delay *

0 1 2

Pixel data processing **

Laser signal emission

See pixel timing
diagrams

Mark Delay

Jump to next line

* Work Delay = SOS delay + Image offset delay + Facet delay + Inset delay

• SOS delay is calculated from SOS angle offset to the edge of the Galvo
field, and the polygon scan speed (lines-per-sec) value

• Image offset delay is calculated from job layout and Mark Speed ***
• Facet delay is calculated from the line-start shift calibration

measurements in micron units
• Inset delay is calculated as a % of pixel period

** In the pixel data processing interval, the X galvo is concurrently applying
correction table value in the direction of the scan

*** The scan field size can be smaller than the galvo field size due to the choice
of scan lens. The galvo field size is defined in the correction table file using the
galvo ½ mechanical angle property. The field size in mm is defined by the
system X-Y calibration factors (bits/mm) where the bits range is 2^^24. The
calibration factors are initially derived from the lens focal length and galvo
range, but are adjusted as needed during calibration.

**** Mark Speed (mm/sec) is calculated from the system X-Y calibration
factors, the galvo field size and the polygon scan speed (lines-per-sec) value

Image on
canvas

(<= Galvo field)

Lens-limited scan field ***
(e.g. 12.34 mech-deg)

SOS Offset
17.16 +/- 1.5
deg-mec to

scan field

Polygon Scan field (36 mech-deg)

Image offset

Jump Delay

Galvo jump time

Prepare for next pixel line

Galvo jumps to the next line execute in parallel to
preparing data for the next scan line. The jump +
jump delay must be finished prior to the end of the
next Work Delay. The jump speed is automatically
chosen to ensure the jump is completed in this
interval.

The next scan line preparation must be completed prior to the
next SOS pulse because the Work Delay is calculated
separately for each facet. This time varies as a function of the
image size and placement in the scan field, the polygon speed,
and the internal geometry of the scan-head

Laser Pipeline Delay

6.5 +/- 1.5
mech-deg

Galvo field (22 mech-deg)

SOS Offset
12.33 +/- 1.5
deg-mech to

galvo field

HW triggered

There are two laser modulation schemes supported when polygon operation is enabled (see

“Controller Configuration Data” section). These are shown in the following figures.

Session API

1040-0012 Revision Q 176

The following commands are used to configure polygon operation.

PolygonSync

Description Sets scan delay parameters and sync with SMC

Syntax <set id='PolygonSync'>{float tScanDelayInSec}</set>

Example <set id='PolygonSync'>0.0035</set>

Arguments

tScanDelayInSec Set the delay, based on polygon speed, from when the Start of

Scan pulse is received, to when pixels are emitted. This delay is a

composite delay referred to as the Work Delay in the overall

polygon timing diagram.

Value range Based on calculations involving entries from the polygon device

configuration and image size/placement considerations.

LaserModDelay

Description
Sets the modulation delay of the laser. A default value for this parameter can be set in

the Laser Configuration file as parameter LaserModDelay.

Syntax <set id='LaserModDelay'>{U16 delay1InNsec},{U16 delay2InNsec}</set>

Example <set id='LaserModDelay'>30,90</set>

Arguments

delay The delay (in nano seconds) from the leading edge of LASER_MOD1 and

LASER_MOD2 to the output of the first pulse on the LASER_GATE1 and

LASER_GATE2 signals respectively.

Value range Within range of pulse period which is calculated by a device

configuration file.

6.5.13 MARK-ON-THE-FLY SUPPORT

Marking on the fly (MOTF) support is provided through the use of several configuration and activation

commands. Motion tracking in either the X or Y-axis can be configured using a digital quadrature input,

file:///C:/Source/source-a/Documentation/trunk/SMC/Manuals/SMC%20Software%20Reference%20Manual%20-%20Copy.docx%23LaserModDelayR2Table

Session API

1040-0012 Revision Q 177

or by simulating the motion in situations where an encoder feedback is not available but the motion

speed is relatively constant.

The MOTF configuration is set using the parameters MotfCalFactor, MotfMode, and MotfDirection

defined in the Controller Configuration file and additionally changeable as part of a job. Run-time

control of the MOTF operation is performed through the use of the commands MotfEnable,

MotfWaitForCount, MotfResetJump, MotfTrigger, and MotfWaitForTrigger. Figure 10 - Mark-on-the-

fly Basic Process Flow on page 185 shows the intended use of these commands.

The actions of the MOTF commands are designed to permit multiple marking sequences within a single

job, each of which requires separate frames of data that must be precisely spaced in distance. This

normally occurs when the required markings exceed the physical limits of the lens field. Wire marking

applications are a good example of when different information must be marked at precise, but

relatively long, distances along the length of the wire.

Mark-on-the-fly Parameters

MotfCalFactor

Description

Relates laser positioning bits to motion encoder counts. The default
value for MotfCalFactor can be set as MotfCalFactor in the Controller
Configuration file.

Note: If used in a job, this command must appear after <set
id='MotfDirection'>.

Syntax <set id='MotfCalFactor'>{FLT calFactor}</set>

Example <set id='MotfCalFactor'>23.345</set>

Arguments

calFactor Calibration factor (in bit counts) for relating laser
positioning bits to motion encoder counts. A negative
number corresponds to a downward counting encoder
tracking forward motion.

Value range -32768.0 - 32767.0

Session API

1040-0012 Revision Q 178

MotfDelayComp

Description

Sets run-time compensation for fixed reaction delays in the hardware
from the time a MotfWaitForCount is executed to when marking actually
occurs. This fixed time delay can result in variable positional offsets as a
function of the speed of the material transport system.

Syntax <set id='MotfDelayComp'>{U16 delay}</set>

Example <set id='MotfDelayComp'>200</set>

Arguments

delay Run-time compensation (in µsecs) for the fixed reaction
delays in the hardware

Value range 0 - 65535

MotfDirection

Description

MOTF orientation and direction in degrees. A default value for
MotfDirection can be set in the Controller Configuration file.

NOTE: This command must appear before <set id='MotfCalFactor'> and
<set id='MotfMode'>.

Syntax <set id='MotfDirection'>{U16 direction}</set>

Example <set id='MotfDirection'>270</set>

Arguments

direction Target travel direction relative to a galvo coordinate
system.

Value
range

0 - left to right in the X axis

90 - bottom to top in the Y axis

180 - right to left in the X axis

270 - Top to bottom in the Y axis

Session API

1040-0012 Revision Q 179

MotfMode

Description

Defines how MOTF position information is derived. If an encoder option
is selected, the quadrature encoder inputs are used. If a simulate-
encoder option is selected, a 1Mhz clock is used to increment the
encoder counter. A default value for MotfMode can be set in the
Controller Configuration file.

Syntax <set id='MotfMode'>{U16 mode}</set>

Example <set id='MotfMode'>0</set>

Arguments

mode Position tracking mode

Value range 0 = Use encoder, 1D

1 = Simulate encoder, 1D

2 = Use encoders, 2D

3 = Simulate encoders, 2D

MotfTriggerEx

Description

This command performs the same function as MotfTrigger (see above),
but it but adds an argument to specify a distance threshold that must be
exceeded before the trigger logic is armed. When this command is
issued—and immediately after a MotfWaitForTrigger command
releases—the trigger counter is cleared and then counts until the
threshold distance is exceeded. When the trigger distance is exceeded,
the signal trigger logic is armed to look for the external trigger event.
When the trigger event is seen, the counter is cleared once again and the
MotfWaitForTrigger command will be armed for release when the count
exceeds the specified value.

Syntax <set id='MotfTriggerEx'>{U16 pin; U16 edge; U32 threshold}</set>

Example <set id='MotfTriggerEx'>0; 1; 25000</set>

Arguments

pin Input pin identifier

Value range 0 – 31

Note: This must be the same input pin identifier as in
WaitForIO.

Session API

1040-0012 Revision Q 180

MotfTriggerEx

edge The edge to trigger the start of the counter

Note: The edge sense is dependent on how the input is
wired.

Value range 0 = Falling edge

1 = Rising edge

threshold Number of scaled encoder counts (in bits) to wait for
before arming the trigger logic

Value range 0 – 232-1

MotfTriggerEvent

Description

This command is used to measure the distance an external transport
system has traveled between transitions of an external signal. It is used in
conjunction with the Priority message SetDigitalInputConfig. When
executed, it enables the trigger counter for continuous counting and
clears it. The trigger counter counts encoder counts in parallel with the
normal MOTF operation and is not affected by normal MOTF state
transitions.

The command specifies an input pin that is expected be armed for event
generation using the SetDigitalInputConfig message. If the specified signal
causes a DigitalIO event, then the event message will contain the trigger
couner value at the time of the event generation. The counter is then
cleared and begins counting again.

Note: The use of this command overrides the MotfTrigger and
MotfTriggerEx commands..

Syntax <set id='MotfTriggerEvent'>{U16 pin}</set>

Example <set id='MotfTriggerEvent'>2</set>

Arguments

pin Input pin identifier

Value range 0 – 31

Note: The input pin identifier is the same as used in
WaitForIO.

Session API

1040-0012 Revision Q 181

Mark-on-the-fly Commands

MotfEnable

Description

Enables or disables Mark-on-the-fly (MOTF) tracking.

Upon enabling, the scaled MOTF encoder counts are added to the uVector
values on each Jump and Mark vector. If in simulate mode (see
MotfMode), the counter is incremented at a 1Mhz rate.

Disabling does the following:

Disables uVector compensation

Clears the HW encoder counter

Zeros a firmware snapshot of the scaled HW counter

Enables the HW encoder counter to count

Syntax <MotfEnable>{U16 state}</MotfEnable>

Example <MotfEnable>1</MotfEnable>

Arguments

state Specifies whether MOTF tracking is to be enabled or
disabled

Value range 0 = MOTF tracking is disabled.

1 = MOTF tracking is enabled. Tracking happens only
during Mark or Jump operations. Otherwise the galvos
are held stationary.

2 = MOTF tracking is enabled for continuous tracking.
Tracking is immediate and galvos track the counters
continuously except for during a MotfWaitForCount
operation.

3 = MOTF tracking is enabled for continuous tracking
with edge of field detection. Tracking is immediate and
galvos track the counters continuously except for during
a MotfWaitForCount operation. If the galvos reach the
edge of field while marking, the marking motion is
temporarily suspended with the laser left on. Motion
continues when the Motf counter biased position
commands bring the galvos back into the field of view.

Session API

1040-0012 Revision Q 182

MotfWaitForTrigger

Description

Configures MOTF to wait for the raw (unscaled) hardware encoder
trigger counter to reach or exceed a specific value. (The trigger counter
should have previously been armed using the MotfTrigger command.)

The semantics are as follows:

 while(abs (current encoder trigger counter)) < count))
 wait;

 reset trigger condition and current encoder counter to zero.

Syntax <MotfWaitForTrigger>{U32 count}</MotfWaitForTrigger>

Example <MotfWaitForTrigger>24557</MotfWaitForTrigger>

Arguments
count Raw encoder count (in bits)

Value range 0 - 232-1

MotfResetJump

Description

Pre-positions the galvos to the start of the next field of patterns to be
processed and takes into account the fact that the galvo starting points
are not at the last “ideal” commanded position, but at a position offset
by the MOTF counter.

Note: At the time this command is executed, a snapshot of the MOTF
counters is taken for possible use if the mode of the next
MotfWaitForCount is "relative."

Syntax
<MotfResetJump{FLT xCoordinate; FLT yCoordinate; FLT zCoordinate;
U16 jumpDelay}</MotfResetJump>

Example <MotfResetJump>-23000; 400; 0; 200</MotfResetJump>

Arguments

xCoordinate Value that represents the X-axis coordinate of the start
of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the X virtual field size
of the system in floating point notation.

Session API

1040-0012 Revision Q 183

MotfResetJump

yCoordinate Value that represents the Y-axis coordinate of the start
of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Y virtual field size
of the system in floating point notation.

zCoordinate Value that represents the Z-axis coordinate of the start
of the next field of patterns to be processed

Value range -231 - 231-1

Note: Depending on the unit selection, this value can
take on a range which represents the Z virtual field size
of the system in floating point notation.

jumpDelay Length of time (in µsecs) to delay after the execution of
this command

Value range 0 - 65535

LaserScribe

Description Turns the laser on for the specified number of MOTF counts.

Syntax <LaserScribe>{U32 count}</LaserScribe>

Example <LaserScribe>2000</LaserScribe>

Arguments
count Scaled encoder counts (in bits)

Value range 0 - 231-1

LaserRegulation

Description
Conditions the system to dynamically adjust the laser pulse duty-cycle as
a function of the speed of the material transport system.

Session API

1040-0012 Revision Q 184

LaserRegulation

Syntax
<LaserRegulation>{U16 fMin; U16 fMax; FLT dcMin; FLT
dcMax}</LaserRegulation>

Example <LaserRegulation>2000; 10000; .3; .8</LaserRegulation>

Arguments

fMin Minimum encoder frequency below which the laser
duty-cycle is set to dcMin

Value range 0 – 10000 encoder counts per 10ms

fMax Maximum encoder frequency above which the laser
duty-cycle is set to dcMax

Value range 0 – 10000 encoder counts per 10ms

dcMin Minimum duty-cycle expressed as a fraction

Value range 0.0 – 1.0

dcMax Maximum duty-cycle expressed as a fraction

Value range 0.0 – 1.0

Session API

1040-0012 Revision Q 185

Figure 10 - MARK-ON-THE-FLY BASIC PROCESS FLOW

Instructions making up the MOTF loop can be sent to the SMC in advance of them being required as

long as the job data does not vary. Synchronization with the external detectors is handled

completely in the SMC.

Session API

1040-0012 Revision Q 186

SMC MOTF for fixed relative spacing of multiple fields (wire marking)

Figure 11 - MARK-ON-THE-FLY USAGE IN WIRE MARKING

Basic Job Structure

First time initialization:

<!-- Activate MOTF counter logic. The MotfMode, MotfDirection, and MotfCalFactorparameters

should be set prior to this point. -->

<MotfEnable>0</MotfEnable>

Job body:

<!-- A. Reset the MOTF Counter to zero and then enable counting -->

<MotfEnable>0</MotfEnable>

<!-- B. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- C. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- D. Pattern the first image “ABC123” while tracking -->

<JumpAbs>Xa0; Ya0; Za0</JumpAbs>

<MarkAbs>Xa1; Ya1; Za1</MarkAbs>

<MarkAbs>Xa2; Ya2; Za2</MarkAbs>

…

Session API

1040-0012 Revision Q 187

<!-- E. Disable tracking and jump to the beginning of the second “DEF456" vector set -->

<MotfResetJump>Xb0; Yb0; Zb0; 0</MotfResetJump>

<!-- F. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- G. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- H. Pattern the second image “DEF456” while tracking -->

<JumpAbs>Xb0; Yb0; Zb0</JumpAbs>

<MarkAbs>Xb1; Yb1; Zb1</MarkAbs>

<MarkAbs>Xb2; Yb2; Zb2</MarkAbs>

…

<!-- I. Disable tracking and jump to the beginning of the third “HIJ789" vector set -->

<MotfResetJump>Xc0; Yc0; Zc0; 0</MotfResetJump>

<!-- J. Wait for a fixed relative displacement from where we were when the MotfResetJump ocurred

-->

<MotfWaitForCount mode='relative'>distance-D</MotfWaitForCount>

<!-- K. Enable tracking -->

<MotfEnable>1</MotfEnable>

<!-- L. Pattern the third image “HIJ789” while tracking -->

<JumpAbs>Xc0; Yc0; Zc0</JumpAbs>

<MarkAbs>Xc1; Yc1; Zc1</MarkAbs>

<MarkAbs>Xc2; Yc2; Zc2</MarkAbs>

…

<!-- M. Disable tracking and jump to the beginning of the vector set -->

<MotfResetJump>Xa0; Ya0; Za0; 0</MotfResetJump>

<!-- N. Repeat steps A-M

Session API

1040-0012 Revision Q 188

SMC MOTF for multi-field imaging using 32-bit virtual addressing

Figure 12 - MARK-ON-THE-FLY USAGE IN MULTI-IMAGE-FIELD APPLICATIONS

Basic job structure for each SMC controlling a scan-head

First time initialization:

<!-- Activate MOTF counter logic. Prior to this point, the MotfMode, MotfDirection, and

MotfCalFactor parameters should be appropriately set. MotfEnable(0) initializes the logic and

counters, begins counting, but does not perm it galvo tracking of the MOTF motion -->

<MotfEnable>0</MotfEnable>

<!-- Set condition for MOTF HW trigger (e.g. START at logic level 1) Distance counter is reset to zero.

If trigger condition is satisfied at the time of the command, the counter starts counting immediately.

Otherwise, the counter starts counting on a transition from 0 to 1 of START. Note that any input

signal can be selected per the same definition as W aitForIO -->

<set id='MotfTrigger'>0, 1</set>

Job body:

<!-- A. Wait for the trigger to be satisfied and then the count to be met or exceeded. The distance is

expressed in scaled encoder counts as are used in the MotfWaitForCount instruction. The count should

Session API

1040-0012 Revision Q 189

be chosen such that travel-direction, origin of the artwork and the origin of the scan-head are

coincident -->

<MotfWaitForTrigger>distance-D-in-unscaled-encoder-counts</MotfWaitForTrigger>

<!-- When the wait completes, the hardware trigger is automatically reset and monitoring of the next

part in initiated -->

<!-- B. At this point the coordinate systems of the artwork and the galvo system need to be

synchronized. This happen by resetting the MOTF logic again. The master scaled MOTF encoder

counter resets to zero, but tracking is still disabled. -->

<MotfEnable>0</MotfEnable>

<!-- C. Now we wait until the vector set is in the field of view of the scan-head. This is expressed as

dist-1 and is in artwork coordinates scaled to 32-bit virtual galvo comm and bits. The

mode='absolute' attribute indicates that the wait is to use absolute scaled encoder counts. The

normal (mode='relative') behavior is to wait for a count relative to the position when the last

MotfResetJump occurred -->

<MotfWaitForCount mode='absolute'>dist-1</MotfWaitForCount>

<!-- D. Now we can mark the vectors but we must enable tracking first. The MotfEnable(1) command

samples the current MOTF counter value which is then used in subsequent galvo motion commands

to translate the artwork coordinates into the scan-head coordinates -->

<MotfEnable>1</MotfEnable>

<!-- E. Mark the vectors. Vector end points are specified in the artwork coordinate system scaled to

32-bit virtual galvo comm and bit units. These 32-bit virtual coordinates are translated into the scan-

head command range by subtracting in real-time the MOTF encoder counter value sampled at the

MotfEnable(1) command and the constantly incrementing MOTF encoder counter value -->

<JumpAbsEx>X0; Y0; Z0</JumpAbsEx>

<MarkAbsEx>X1; Y1; Z1</MarkAbsEx>

…

<!-- F. When all of the vectors in the current field have been imaged we disable tracking (but not

counting) and re-position the galvos to a wait location that will minimize startup motion for the next

vector set. The MOTF counter continues to increment thus tracking the material through the system.

-->

Session API

1040-0012 Revision Q 190

<MotfResetJump>Xw; Yw; Zw</MotfResetJump>

<!-- G. Repeat sequence C-F for each frame that needs to be imaged. At the end of the entire job,

begin at step A again. Since the trigger logic was automatically reset in the previous iteration it will

have been triggered already and the counter will be very near the desired terminal value and step A

will execute very quickly -->

6.5.14 VELOCITY CONTROLLED LASER MODULATION

Galvos make abrupt turns when rendering polygons, and the actual point of laser focus does not follow

the ideal path described by the vectors. This is because of limitations of servo bandwidth imposed by

finite inertia of the motors and mirrors, and restricted power supply voltage and current. Instead, the

galvos follows a curved path joining one line segment to the next. These arcs introduce localized

distortion of the final image, which is generally undesirable.

The PolyDelay parameter compensates for this effect by introducing a delay in the command stream

generation. The delay gives the galvos time to reach the target destination before a new command

directs them along the next vector segment. Normally the amount of time required reach the target

destination is proportional to the angular change of the vector segments. Smaller angles require less

time, and larger angles require more time. This proportionality is automatically managed using the

VariPolyDelayFlag parameter.

The net effect of using non-zero PolyDelay values is that the laser focus point velocity slows down

proportional to the length of the delay. Although the rendered geometry is more accurate, the energy

density along the focus path increases in the regions of lower velocity. The same effect is also present

at the beginning and end of marking vectors. A user manages these effects using the LaserOnDelay and

LaserOffDelay parameters, which are normally adjusted to avoid “burn-in” effects at these points in a

vector object.

The SMC provides a mechanism to automatically compensate for the effects of the changes in vector

speed at the terminal and way-points of the vector drawing process. This mechanism offers three

separate compensation modes, which would be selected based on the type of laser being used. An

overview of this behavior is shown in the following figure.

Session API

1040-0012 Revision Q 191

Figure 13 - VELOCITY CONTROLLED LASER MODULATION OVERVIEW

Mode 1 – Duty-cycle

Users of CO2 lasers normally control average power by selecting an appropriate modulation duty-cycle.

These lasers usually operate at a fixed frequency or pulse period, and the job varies the power by

changing the pulse width. Mode 1 permits dynamic scaling of the pulse width from the normal job

setting down to a settable percentage value of maximum power. This is illustrated in the following two

figures, where the duty-cycle is varied between 80% and 20%.

Session API

1040-0012 Revision Q 192

Figure 14 - VELOCITY CONTROLLED LASER MODULATION: DUTY-CYCLE, ACCELERATION EFFECT

Figure 15 - VELOCITY CONTROLLED LASER MODULATION: DUTY-CYCLE, DECELERATION EFFECT

Session API

1040-0012 Revision Q 193

Mode 2 – Frequency

Users of YAG lasers have a choice of two power control modes. Since YAG lasers emit energy when

they are Q-Switched, the individual pulse energy level can normally be controlled by changing the

pumping energy and/or the modulation frequency. Mode 2 permits changing the average power by

dynamically changing the pulse frequency while maintaining a constant pulse width. The frequency is

reduced proportional to the galvo vector speed. This is illustrated in the following two diagrams which

show the frequency changing from 100KHz down to 10KHz.

Figure 16 - VELOCITY CONTROLLED LASER MODULATION: FREQUENCY, ACCELERATION EFFECT

Session API

1040-0012 Revision Q 194

Figure 17 - VELOCITY CONTROLLED LASER MODULATION: FREQUENCY, DECELERATION EFFECT

Mode 3 – Laser Power

Mode 3 controls the analog or digital laser power setting proportional to the velocity. This is

illustrated below where laser power, represented by an analog control voltage, varies between 80

and 20%. Note that the laser modulation does not change in this mode.

Figure 18 - VELOCITY CONTROLLED LASER MODULATION: LASER POWER

Session API

1040-0012 Revision Q 195

Velocity Controlled Laser Modulation Compensation

The VelocityComp command is used to implement velocity controlled laser modulation

compensation.

VelocityComp

Description
Sets the mode and behavior of the velocity controlled laser modulation
compensation. If the first argument is zero, then arguments two and
three may be omitted.

Syntax
<set id='VelocityComp'>{U16 mode; U16 maxComp; U16
aggressivity}</set>

Example <set id='VelocityComp'>1; 20; 1000</set>

Arguments

mode Mode of operation for velocity-controlled laser
modulation compensation

Value range 0 = Disabled
1 = Duty-cycle (pulse width changes)
2 = Frequency (pulse period changes)
3 = Power (analog or digital power changes)

maxComp The limit of the compensation that will be done in
terms of percentage of the maximum possible value.
Compensation will be applied proportional to the
calculated vector velocity of the mirror.

Value range 0 - 100

aggressivity How aggressively the system will compensate for
velocity changes. The higher the number, the quicker
the change will be applied. This number is in Hertz,
and it directly correlates to the tuning bandwidth of
the galvo servos.

Session API

1040-0012 Revision Q 196

VelocityComp

Value range 500 - 5000

6.5.15 VIA-HOLE DRILLING SUPPORT

The SMC has several extensions designed to support open-loop and closed-loop laser drilling modes.

These extensions will work with galvo/servo systems that provide real-time in-position feedback via

Digital I/O, XY2-100 Status, or GSBus Status.

NOTE: The use of the JumpAndFireList command to perform drilling is deprecated and no longer

recommended. It is replaced with the JumpAndDrillList command which is more efficient.

Drilling data can be applied using the JumpAndDrillList command which specifies a list of discrete

two-axis coordinate data with drilling specific laser firing and synchronization parameters.

The coordinate information in this command represents discrete jump points that are applied without

profiling. Galvo/servo controllers used in this mode must be capable of handling transient command

inputs that could range in distance from single-bit to full-field. The expectation is that real-time in-

positon feedback is available for sensing by the SMC as is the case with GSBus connected LightningTM

II digital servo controllers. Both closed-loop and open-loop modes of operation are supported as

described below. More detailed information about via-hole drilling using the SMC can be found in

application notes on the Cambridge Technology web site www.camtech.com/downloads/customers.

Please contact Cambridge Technology Technical Support for the download password: support-

us@cambridgetechnology.com

Closed-loop operation

In fully closed-loop mode, the laser firing part of the JumpAndDrillList execution is configured to check

for in-position before firing. Checking for up to four axes is done in parallel. A programmable timeout

is used to protect against abnormal settling times or galvo fault conditions. In such a case, drilling is

stopped and an exception event is generated and forwarded to the host application for handling.

SettleCheckMode is used to configure closed loop drilling behavior.

http://www.camtech.com/downloads/customers
mailto:support-us@cambridgetechnology.com
mailto:support-us@cambridgetechnology.com

Session API

1040-0012 Revision Q 197

SettleCheckMode

Description
Sets the settle-checking behavior of the JumpAndDrillList commands.
Used to validate the position of the galvos after a move is made and
before the laser is fired.

Syntax
<set id='SettleCheckMode'>{U16 input; HEX U32 mask; HEX U32 value;
U16 timeout; U16 checkDelay; U16 checkMode }</set>

Example
<set id='SettleCheckMode'>3; 0x00006666; 0x00006666; 10000; 80;
0</set>

Arguments

input Selects the settle-checking inputs.

Value range 0 = disabled

1 = check XY2-100 status

2 = check standard digital I/O

3 = check GSBus status

mask Bits to consider (hex) in 32-bit units

Value range 0 - 0xFFFFFFFF

value Bit values when settled (hex) in 32-bit units

Value range 0 - 0xFFFFFFFF

Timeout /
FiringAdjust

If checkMode = 0, timeout defines how long to
wait (in usec) for value to match the mask. If the
timeout value is exceeded, and exception is
generated and the job aborted.

If checkMode = 1 or 2, (semi-open-loop or full-
open-loop), the settle checking is done after the
greater of settleCheckDelay or the maximum jump
time selected from the axis jump-time tables for
the distance requested. In these cases, the
timeout value is interpreted as a firing-adjust
value and is added to the jump delay to
programmatically increase or decrease the
amount of time before firing the laser.

Value range When interpreted as a timeout: 0 - 85.899 sec

When interpreted as a firing-adjust: -500 to 500
usec

Session API

1040-0012 Revision Q 198

SettleCheckMode

checkDelay How long to wait (in µsecs) before checking for
settling after initiating a jump. This provides time
for the galvos to go out of position before they
are checked for arrival at the new position.

If mode = 1, both the XY2-100 and XY2-100e
status ports are examined concurrently. XY2-100
status bits are in position[15..0] and XY2-100e are
bits position[31..16].

If mode = 2, the bits are interpreted as defined in
the CurrentDIO value of the Broadcast Status Data
packet.

If mode = 3, the GSBus status register is compared
where four-bit fields are used for each axis.

Note: If checkMode does not = 0, then this value
acts as a minimum jump time specification over-
riding the data calculated during the
CalibrateJumpTime operation.

Value range 0 - 85.899 sec

 checkMode Selects the checking behavior.

Value range 0 = Before firing the laser (closed-loop mode)

1 = After firing the laser (semi-open-loop, uses
jump-time table)

2 = Do not check (full open-loop, uses jump-time
table)

Note: If checkMode is set to 1, in position
checking is performed after the galvos have been
commanded to move. Therefore there is only a
short interval of time when in-position may still be
valid.

Open-loop operation

In open-loop mode drilling the galvos are calibrated for the amount of time it takes to execute a jump

and reach an in-position condition. During calibration, a sequence of variable length jumps is executed

and the settling time recorded in a table, one table for each axis. During execution of the

Session API

1040-0012 Revision Q 199

JumpAndDrillList command, the distance required of each axis is used to index each of the tables and

jump times retrieved. If the distance does not fall on a table entry, then linear interpolation between

table entries is performed to calculate a value. The maximum of the table values retrieved is used to

wait before firing. In this mode it is possible to cause the laser to fire earlier or later using FiringAdjust

parameter. Firing earlier may permit improved throughput at the sacrifice of some quality.

The galvos are commanded to jump to the next as soon as the laser firing starts. This permits overlap

of operations recognizing the fact that galvo inertia prevents instantaneous motion when a command

is received.

Calibration of the jump-times is invoked using the CalibrateJumpTime command. This command is

available for use only with Lightning II galvos systems connected to the SMC via the GSBus. The

command SettleCheckMode must be used prior to CaibrateJumpTime to set the properties describing

how settle checking is to be performed during calibration.

CalibrateJumpTime

Description

Builds run-time tables of measured jump times which are then used in the
execution of the JumpAndDrillList commands. The resulting table data is
used to calculate the time that the galvos will achieve in-position status
based on a requested jump distance.

Syntax
<CalibrateJumpTime>{HEX U32 axisMask; U32 averagingMode; FLT
maxDistance; FLT smallestStep; BOOL logData }</CalibrateJumpTime>

Example
<CalibrateJumpTime>0x3, 0, 80.000000, 0.100000,
TRUE</CalibrateJumpTime>

Arguments

axisMask Select the X and Y axes of a head for calibration.
Two-bit-per-head bit-mask. The least significant of
the two bit field is the X axis. Multiple heads are
specified by enabling additional two-bit fields in
successively higher-order bit fields.

Session API

1040-0012 Revision Q 200

CalibrateJumpTime

Value range 0x0 = No axes selected

0x1 = Head 1, X axis

0x2 = Head 1, Y axis

0x3 = Head 1, X and Y axis

0x4 = Head 2, X axis

0x8 = Head 2, Y axis

0xC = Head 2, X and Y axis

Other axis combinations are specified by logical OR-
ing the bit-fields together.

averagingMode How the measured data is averaged. Multiple
samples for a given distance are taken in various
parts of the field.

Value range 0 – the table value gets the average of the samples
for a given distance

1 – the table value gets the maximum of the samples
for a given distance

2 – the table value gets the minimum of the samples
for a given distance

maxDistance Specifies the largest distance to calibrate. Values are
floating point and are converted into system “bits”
units per the Units command.

Value range 1 – (224-1) (bits) or 1 field size (user units)

smallestStep Specifies the smallest distance to calibrate. Values
are floating point and are converted into system
“bits” units per the Units command.

Session API

1040-0012 Revision Q 201

CalibrateJumpTime

Value range 1 – (224-1) (bits) or 1 field size (user units)

Note: smallestStep must be less than maxDistance

logData Specifies if a log file is created to hold the calibration
data. This file is created inside the SMC and can only
be accessed under the guidance of Cambridge
Technology technical support personnel. It is used
for diagnostic purposes only.

Value range TRUE or FALSE. FALSE is recommended for normal
operation.

6.6 STRUCTURED JOB ORGNIZATION

Any job data defined above, from single statement to a lengthy sequence of statements, can be passed

to the SMC for immediate execution via the sendStreamData method. Data sent like this is executed

once and then discarded. If a repetitive marking pattern is desired, an application could repeatedly

send the job data with a sequence of calls to sendStreamData. Alternatively, jobs can be structured

into groups of related statements called segments and these segments can be sent to the SMC as a

named entity for deferred execution. Many segment definitions may be sent to the SMC in this

manner. A separate sequence list can then be used to dictate the execution order of the segments,

how many times to iterate each segment, and how many times to iterate the sequence as a whole.

An entire job made up of multiple segments, and potentially multiple sequences, can be sent in a single

sendStreamData call. The same XML that makes up this job can be passed to the saveJobData method

for storage on the SMC and later accessed in stand-alone operational mode. One or more segment

definitions may be also specified and saved as a library for later reference and use within a sequence

specification. This greatly reduces the amount of data moving through the system when commonly

used graphical entities such as pre-rendered character sets are required at run-time.

Session API

1040-0012 Revision Q 202

6.6.1 SEGMENT CONSTRUCT

Segment

Description

Defines a job segment, which is a group of related instructions. Any job
action command or parameter statement is valid inside of a Segment.
Multiple Segments can be defined inside of a call to sendStreamData.

Note: This command is valid only in a job <Data> definition.

Syntax

<Segment id='{STR name}' iterations='{U16 iterations}' deferred='{BOOL
deferred}'>
 {any valid series of command or parameter statements}
</Segment>

Example

<Segment id='LaserCfg' iterations='1' deferred='true'>
 <set id='LaserPulse'>1; 50; 100</set>
 <LaserPower>200</LaserPower>
</Segment>

Arguments

name A name assigned to this segment

Value
range

Up to 128 alphanumeric characters

iterations The number of times this segment is to be iterated.
The default is 1 if not specified.

Value
range

1 - 65535

deferred Specifies whether the segment is executed
immediately or is saved for reference by a Sequence. If
no value is specified, the default is false (execute
immediately).

Value
range

true = Save this segment for reference by a Sequence

false = Execute this segment immediately

Session API

1040-0012 Revision Q 203

6.6.2 STRUCTURED JOB SEQUENCING

Sequence

Description

Defines the sequence of execution for job segments that were previously
defined with the Segment command.

Note: This command is valid only in a job <Data> definition.

Syntax
<Sequence iterations='{U16 iterations}'>
 {any valid series of sequence statements}
</Sequence>

Example

<Sequence iterations='3'>
 <RunSegment>LaserCfg</RunSegment>
 <RunSegment>Vectors; 5</RunSegment>
</Sequence>

Arguments

iterations The number of times to execute this job segment. A
value of 0 means to execute this sequence
continuously.

Value range 0 - 65535

Sequence Commands

RunSegment

Description
Causes a previously loaded and “deferred” job segment to be executed.

Note: This command is valid only inside a <Sequence> definition.

Syntax <RunSegment>{STR segmentName; U16 iteration}</RunSegment>

Example <RunSegment>Vectors; 5</RunSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

Session API

1040-0012 Revision Q 204

RunSegment

iteration Number of times to iterate the named job segment. If
the previously loaded job segment had an iteration
attribute specified, then the two iteration values are
multiplied, and the result is the final iteration count.
If not specified, the default is 1.

Value range 1 - 65535

DeleteSegment

Description

Causes a previously loaded and “deferred” job segment to be discarded
with all used memory returned to the main memory pool.

Note: This command is valid only inside a <Sequence> definition.

Syntax <DeleteSegment>{STR segmentName}</DeleteSegment>

Example <DeleteSegment>LaserCfg</DeleteSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

DeleteAllSegments

Description
Causes all previously loaded and “deferred” segments to be discarded
with all used memory returned to the main memory pool.

Syntax <DeleteAllSegments></DeleteAllSegments>

Example <DeleteAllSegments></DeleteAllSegments>

Arguments None

Session API

1040-0012 Revision Q 205

DisableSegment

Description

Causes a previously loaded and “deferred” job segment to be marked as
“disabled”, which causes it to be skipped when encountered within a
subsequent sequence list.

Note: This command is valid only inside a <Sequence> definition.

Syntax <DisableSegment>{STR segmentName}</DisableSegment>

Example <DisableSegment>LaserCfg</DisableSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

EnableSegment

Description

Causes a previously loaded and “deferred” job segment to be marked as
“enabled”, which causes it to be executed when encountered within a
subsequent sequence list.

Note: This command is valid only inside a <Sequence> definition.

Syntax <EnableSegment>{STR segmentName}</EnableSegment>

Example <EnableSegment>LaserCfg</EnableSegment>

Arguments

segmentName Identifier of a previously loaded and “deferred” job
segment

Value range Up to 128 alphanumeric characters

UsingFile

Description

(Reserved for future use) Specifies the name of a previously saved set of
<Segment> definitions for use in a following <Sequence> definition.

Note: This command is valid only in a job <Data> definition.

Syntax <UsingFile>{STR segmentFileName}</UsingFile>

Example <UsingFile>LaserSettings</UsingFile>

Session API

1040-0012 Revision Q 206

UsingFile

Arguments

segmentFileName Identifier of a previously saved set of <Segment>
definitions. These definitions would have been
saved to the SMC using the API method
savejobData.

Value range Up to 128 alphanumeric characters

Note: Do not mix deferred and non-deferred segments in a single XML job packet.

6.6.3 STRUCTURED JOB EXAMPLE

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

<Data type='JobData' rev='2.0'> Define a job data packet.

 API Action: Prepare a job packet

 <Segment id='Preamble' iterations='1'
deferred='TRUE'>

Define a deferred execution
segment.

 <BeginJob></BeginJob> Assert BUSY signal and generate
an event.

 <set id='ActiveCorrectionTable'>1</set> Select the marking laser correction
table.

 <set id='EnableLaser'>TRUE</set> Enable the laser for marking.

 </Segment> Delimit the segment.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Segment id='Alignment' deferred='TRUE'> Define an immediate execution
segment.

Session API

1040-0012 Revision Q 207

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <set id='FieldOffset'>0.000000; 0.000000;
0.000000</set>

Introduce a field offset.

 <set id='Transform'>1.000000; 0.000000;
0.000000; 1.000000</set>

Set a Unity transform.

 </Segment> Delimit the segment.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Segment id='Params:Default' deferred='TRUE'> Define a deferred execution
segment.

 <set id='LaserPower'>50</set> Set the laser parameters.

 <set id='LaserEnableDelay'>15</set>

 <set id='LaserEnableTimeout'>15</set>

 <set id='LaserOnDelay'>0</set>

 <set id='LaserOffDelay'>50</set>

 <set id='LaserPipelineDelay'>100</set>

 <set id='LaserPulse'>1; 5; 10</set>

 <set id='MarkSpeed'>10; 10</set> Set the galvo speeds.

 <set id='JumpSpeed'>10; 10</set>

 </Segment> Delimit the segment.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Segment id='Vectors:Pentagon.plt' iterations='1'
deferred='TRUE'>

Define a deferred execution
segment.

 <set id='JumpDelay'>100</set> Set the delays. These must be kept
with the vector
definitions.

Session API

1040-0012 Revision Q 208

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <set id='MarkDelay'>100</set>

 <set id='PolyDelay'>50</set>

 <set id='VariPolyDelayFlag'>FALSE</set>

 <JumpAbs>-10000; 10000; 0</JumpAbs> Perform marking operations.

 <MarkAbs>0; 20000; 0</MarkAbs>

 <MarkAbs>10000; 10000; 0</MarkAbs>

 <MarkAbs>7500; -10000; 0</MarkAbs>

 <MarkAbs>-7500; -10000; 0</MarkAbs>

 <MarkAbs>-10000; 10000; 0</MarkAbs>

 </Segment> Delimit the segment.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Segment id='Postamble' iterations='1'
deferred='TRUE'>

Define a deferred execution
segment.

 <set id='EnableLaser'>FALSE</set> Enables the pointer laser.

 <set id='ActiveCorrectionTable'>2</set> Select the pointer laser correction
table.

 <EndJob></EndJob> De-assert BUSY signal and generate
an event.

 </Segment> Delimit the segment.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Sequence iterations='1'> Define a sequence to be iterated
1 time.

 <RunSegment>Preamble</RunSegment> Execute the preamble segment.

 <RunSegment>Alignment</RunSegment> Execute the alignment segment.

Session API

1040-0012 Revision Q 209

Table 23 - STRUCTURED JOB EXAMPLE

XML Job Statement Meaning

 <RunSegment>Params:Default</RunSegment> Execute the params segment.

 </Sequence> End the sequence

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Sequence iterations='10'> Define a sequence to be iterated
10 times.

<RunSegment>Vectors:Pentagon.plt</RunSegme
nt>

Execute the marking vectors.

 </Sequence> End the sequence.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

 <Sequence iterations='1'> Define a sequence to be iterated
1 time.

 <RunSegment>Postamble</RunSegment> Execute the postamble segment.

 </Sequence> End the sequence.

API Action: Compile and mark for
on-the-board in-memory staging;
append to output buffer.

</Data> End the job packet.

API Action: Send output buffer to
board.

Controller Actions: Deferred
segments are staged in memory on
the controller.

Each sequence is executed in order.

Session API

1040-0012 Revision Q 210

The job could have been organized differently; the immediate segments could have been combined

into one segment, and the same effect would have achieved. The partitioning in the above example

illustrates how a job can be organized and partitioned into related groups of job commands. This

partitioning does not add any run-time overhead.

6.7 MARKING JOB CONTROL AND ADMINISTRATION

After a session has been created, job data can be sent to an SMC using the sendStreamData

(overload 1) method or the sendStreamData (overload 2) method.

Note: Job data is created in XML format. A session is created using the loginSession method.

6.7.1 sendStreamData (overload 1)

Purpose Sends streaming data to an SMC device session

Syntax
uint
sendStreamData(

string pstrData
uint uiTimeout)

Arguments

pstrData The data sent to the SMC device. The string supplied contains
an XML representation of the data.

uiTimeo
ut

Duration for attempting call in seconds. The special case of
zero means to wait an infinite duration.

Session API

1040-0012 Revision Q 211

Comments

Marking jobs are specified as sequences of data that represent instructions
to the controller to:

 set operational parameters

 activate the laser steering galvos in both marking and non-marking modes

 interact with external devices

 send event information back to a listening application

Job execution by the controller starts as soon as the job data is received by
the module and continues for as long as job data is available. Very large
jobs can be partitioned into logical chunks, such as at marking object
boundaries, and streamed out to the device as buffering on the host and
target allow. Since the execution of the job—and the process of streaming
the data of the job—are asynchronous and overlapped, it is possible to
maintain continuous job execution with no pauses.

It is recommended that for very large streaming jobs, the job commands
be packetized into groups of ~1000 instructions and each packet sent with
a separate call to sendStreamData(). This minimizes the startup latency of
executing the job and maximizes the use of the network and SMC buffering
system.

See also sendStreamData2

If a syntax error is detected in the XML job data, an OnData event is generated to relate back to the

application the nature of the error. See Section 6.8.3 OnDataEvent.

6.7.2 sendStreamData (overload 2)

Purpose Sends streaming data to an SMC device session

Syntax

uint sendStreamData(string pstrData
uint uiTimeout
bool bWaitForACK
out uint executionTime)

Arguments
pstrData The data sent to the SMC device. The string

supplied contains an XML representation of the
data.

Session API

1040-0012 Revision Q 212

uiTimeout Duration for attempting call in seconds. The special
case of zero means to wait an infinite duration.

bWaitForACK If set to TRUE, the function does not return until a
reception acknowlegement is received from the
SMC. Otherwise, data packets are queued for
execution.

executionTime Returns an estimated execution time in milliseconds
for streaming style packets

Comments

If a syntax error is detected in the XML job data, an OnData event is
generated to relate back to the application the nature of the error.

Marking jobs are specified as sequences of data that represent
instructions to the controller to set operational parameters, to activate
the laser steering galvos in both marking and non-marking modes, to
interact with external devices, and to send event information back to a
listening application. The job data is specified in an XML string, which is
defined in the Streaming Job Data Definition section.

Job execution by the controller starts as soon as the job data is received
by the module and continues for as long as job data is available. Very
large jobs can be partitioned into logical chunks, such as at marking
object boundaries, and streamed out to the device as buffering on the
host and target allow. Since the execution of the job and the process of
streaming the data of the job are asynchronous and overlapped, it is
possible to maintain continuous job execution with no pauses.

It is recommended that for very large streaming jobs, the job commands
be packetized into groups of ~1000 instructions and each packet sent
with a separate call to sendStreamData(). This minimizes the startup
latency of executing the job and maximizes the use of the network and
SMC buffering system.

See also sendStreamData (overload 1)

If a syntax error is detected in the XML job data, an OnData event is generated to relate back to the

application the nature of the error. See Section 6.8.3 OnDataEvent.

Session API

1040-0012 Revision Q 213

6.7.3 sendCorrectionData (overload 1)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint
sendCorrectionData(

uint uiTableID
string pstrCorrTablePath
double dM00
double dM01
double dM10
double dM11
double dDx
double dDy
uint uiTimeout
bool bWaitForACK)

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTableP
ath

Full path to Correction table data

dM00 2x2 Matrix coefficient

dM01 2x2 Matrix coefficient

dM10 2x2 Matrix coefficient

dM11 2x2 Matrix coefficient

dDx X offset (mm)

dDy X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Session API

1040-0012 Revision Q 214

Comments

Normally correction tables are automatically loaded for use when the SMC
powers up. This method permits overriding the default tables with new
ones which can be altered using the transform parameters.

Both Cambridge Technology XML and Scanlab 2D CTB file formats are
supported.

Note that tables loaded using this method are not permanent and are lost
after a SMC power-cycle.

See also sendCorrectionData (overload 2), sendCorrectionData (overload 3)

6.7.4 sendCorrectionData (overload 2)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint
sendCorrectionData
(

uint uiTableID
string pstrCorrTablePath
double dScaleX
double dScaleY
double dRotation
double dDx
double dDy
uint uiTimeout
bool bWaitForACK)

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTable
Path

Full path to Correction table data

dScaleX X scale factor

dScaleY Y scale factor

dRotation Rotation in degrees (Positive is counter-clockwise)

Session API

1040-0012 Revision Q 215

6.7.5 sendCorrectionData (overload 3)

dDx X offset (mm)

dDy X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Comments

Normally correction tables are automatically loaded for use when the SMC
powers up. This method permits overriding the default tables with new ones
which can be altered using the adjustment parameters.

Both Cambridge Technology XML and Scanlab 2D CTB file formats are
supported.

Note that tables loaded using this method are not permanent and are lost
after a SMC power-cycle.

See also sendCorrectionData (overload 1), sendCorrectionData (overload 3)

Purpose Send a correction table to the board with transformations applied.

Syntax

uint sendCorrectionData(uint uiTableID
string pstrCorrTablePath
double dScaleX
double dScaleY
double dRotationX

double dRotationY

double dRotationZ
double dDx
double dDy

double dDz
uint uiTimeout
bool bWaitForACK)

Session API

1040-0012 Revision Q 216

Arguments

uiTableID Table ID: 1, 2, 3, 4

pstrCorrTablePath Full path to Correction table data

dScaleX X scale factor

dScaleY Y scale factor

dRotationX Rotation in degrees about the X axis (Tip)

(Positive is counter-clockwise)

dRotationY Rotation in degrees about the Y axis (Tilt)

(Positive is counter-clockwise)

dRotationZ Rotation in degrees about the Z axis (Theta)

(Positive is counter-clockwise)

dDx X offset (mm)

dDy Y offset (mm)

dDz X offset (mm)

uiTimeout Timeout for transaction

bWaitForACK Wait for ack from server

Comments

Normally correction tables are automatically loaded for use when the SMC
powers up. This method permits overriding the default tables with new ones
which can be altered using the adjustment parameters.

This method is designed to manipulate three-axis correction files.

Note that tables loaded using this method are not permanent and are lost
after a SMC power-cycle.

See also sendCorrectionData (overload 1), sendCorrectionData (overload 2)

Session API

1040-0012 Revision Q 217

6.7.6 saveJobData

Purpose
Sends job data for storage in the SMC Flash memory or on an attached

USB Flash storage drive

Syntax

uint saveJobData(int iTargetLocation

string pstrStorageName

string pstrJobData

uint puiAccessType

uint puiTimeout)

Arguments

iTargetLocation Storage location:

0 = Local disk on the PC

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrStorageName Name to use as the file name. If iTargetLocation =

0, then this is an absolute path on the local

machine.

pstrJobData XML representation of the job data

puiAccessType Access type:

0 = Overwrite

1 = Append (Reserved for future use)

puiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision Q 218

Comments

When a job has been constructed and tested using on-line workstation

facilities, it can be sent to the SMC for storage on resident Flash memory

or on an attached USB Flash storage drive. Jobs can also be stored on

device tmp folder, which is volatile (job file will be lost after power cycle).

Jobs stored on these devices can be run when the controller is placed in

"local" mode.

See also manageJobData, requestJobNameList, copyJobData

6.7.7 sendJobData

Purpose
Loads job data from local storage and sends it to the SMC for immediate

execution

Syntax
uint sendJobData(string pstrStorageName

uint puiTimeout)

Arguments

pstrStorageName Absolute path to the compiled job file on the local

machine

puiTimeout Duration for attempting call in seconds

Comments

Job data is loaded from a local drive and sent to the target SMC for

immediate execution.

When a job has been saved locally using the savejobData method, it can

later be sent to the SMC for immediate execution

See also manageJobData, requestJobNameList, saveJobData

Session API

1040-0012 Revision Q 219

6.7.8 copyJobData

Purpose
Copies job data from local storage and sends it for storage in the SMC
Flash memory or USB device

Syntax
uint copyJobData(int iTargetLocation

string pstrStorageName
uint puiTimeout)

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrStorageName Absolute path to the compiled job file on the
local machine

puiTimeout Duration for attempting call in seconds

Comments

When a job has been constructed and tested using on-line workstation
facilities and saved locally using the saveJobData method, it can be sent to
the SMC for storage on resident Flash memory or on attached USB Flash
storage drives Jobs stored on these devices can be run when the
controller is placed in "local" mode.

See also manageJobData, requestJobNameList, saveJobData

6.7.9 manageJobData

Purpose Renames or deletes jobs that have been stored on the SMC

Syntax

uint manageJobData(int iTargetLocation
string pstrCurrentStorageName
string pstrNewStorageName
uint puiActionType
uint puiTimeout)

Session API

1040-0012 Revision Q 220

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

pstrCurrentStorageName Current file name

pstrNewStorageName New file name

puiActionType Action type:

0 = Delete

1 = Rename

puiTimeout Duration for attempting call in seconds

Comments
A job has been stored on the SMC can be renamed or deleted using this
command.

See also saveJobData, requestJobNameList

6.7.10 requestJobNameList

Purpose Returns a list of jobs that have been stored on the SMC Flash or USB Flash

Syntax

uint requestJobNameList(int iTargetLocation
out int piJobCount
out string pstrStorageName
uint puiTimeout)

Arguments

iTargetLocation Storage location:

1 = Flash on SMC

2 = USB Flash device on SMC

3 = tmp folder on SMC (volatile)

piJobCount Number of jobs found on the target device

Session API

1040-0012 Revision Q 221

pstrStorageName File name of the data file. The file path is
constructed by the API as follows:

<PermStoragePath>\SMC\Config\<pstrStor
ageName>.xml

where PermStoragePath is defined in the
SysInfoData for the selected SMC and
pstrStorageName is the name of the
selected fixed data file as stored on the
SMC without the ".xml" extension.

puiTimeout Duration for attempting call in seconds

Comments

Returns a list of jobs stored in the specified storage location on the SMC

An example of the syntax of the list is as follows (for the SMC Flash
device):

 <FlashJobList>
 <Job name='JobData.wlb'/>
 <Job name='LocalJob.wlb'/>
 </FlashJobList>

If the device is specified to be the USB Flash device, then <FlashJobList>
would be <USBJobList>.

See also saveJobData, manageJobData

6.7.11 copyUserDataFile

Purpose
Copies job data from local storage and sends it for storage in the SMC
Flash memory or USB device

Syntax

uint copyUserDataFile(int iRemoteLocation

string pstrLocalStoragePath,
string pstrRemoteStorageName,

bool bToController,
uint puiTimeout)

Session API

1040-0012 Revision Q 222

Arguments

iRemoteLocation Storage location:

3 = Temp folder on SMC (volatile)

5 = Data folder on the SMC Flash file
system

pstrLocalStoragePath Absolute path to a data file on the local
machine

pstrRemoteStorageName File name on the remote controller

bToController False = Copy from controller to PC

True = Copy from PC to controller

puiTimeout Duration for attempting call in seconds

Comments

Data files used in job processing can be sent to the SMC for temporary in-
memory storage or permanent storage on the SMC Flash file system in the
dedicated “Data” folder. These files can be accessed from within the SMC
by running a job using ScanScript file access commands. See the SMC
ScanScript help for further information.

See also manageUserDataFile, requestUserDataFileNameList

6.7.12 manageUserDataFile

Purpose Renames or deletes data files that have been stored on the SMC

Syntax

uint
manageUserDataFile(

int iTargetLocation
string pstrCurrentStorageName
string pstrNewStorageName
uint puiActionType
uint puiTimeout)

Session API

1040-0012 Revision Q 223

Arguments

iTargetLocation Storage location:

3 = Temp folder on SMC (volatile)

5 = Data folder on the SMC Flash file
system

pstrCurrentStorageName Current file name

pstrNewStorageName New file name

puiActionType Action type:

0 = Delete

1 = Rename

puiTimeout Duration for attempting call in seconds

Comments
A data file stored on the SMC can be renamed or deleted using this
command.

See also copyUserDataFile, requestUserDataFileNameList

6.7.13 requestUserDataFileList

Purpose
Returns a list of data file that have been stored on the SMC Flash or Temp
folders

Syntax

uint requestUserDataFileList(int iTargetLocation
out int piFileCount
out string pstrFileNameList
uint puiTimeout)

Arguments

iTargetLocation Storage location:

3 = Temp folder on SMC (volatile)

5 = Data folder on the SMC Flash file
system

Session API

1040-0012 Revision Q 224

piFileCount Number of files found on the target
device

pstrFileNameList An XML string containing the list of
data files found in the target
directory.

puiTimeout Duration for attempting call in
seconds

Comments

Returns a list of data file stored in the specified storage location on the
SMC.

An example of the syntax of the list is as:

 <FileList>
 <File name='JobData.dat/>
 <File name='LocalJob.txt/>
 </ FileList >

See also copyUserDataFile, manageUserDataFile

6.8 ASYNCHRONOUS COMMUNICATION

The SMC API uses programmed events to communicate asynchronous data back to an application.

Events are divided into three types: Connect, Message and Data. Connect events are generated on

major system state changes during login and logout operations Message events are generated during

normal execution of a job. They may be programmed to occur at specific points during job execution,

or they may be generated by the system to signal an exception condition. Data events are created in

response to specific application requests for data from the system, or from errors generated by the

client API or SMC server firmware. This permits a non-blocking request/response code structure that

is more efficient for data requests that take time to resolve.

6.8.1 OnConnectEvent

Purpose Returns application and exception events from the SMC device session

Session API

1040-0012 Revision Q 225

Syntax
OnConnectEvent(string pstrIPAddr,

bool bState)

Arguments

pstrIPAddr The IP address of the SMC whose connected state
changed

bState True if connected; False if disconnected

Comments
The API can generate events when the API successfully "connects" to an
SMC via the loginSession method or "disconnects" using the logoutSession
method. These events are accessed via the OnConnectEvent command.

See Also loginSession, logoutSession

6.8.2 OnMessageEvent

Purpose Returns application and exception events from the SMC device session

Syntax
OnMessageEvent(uint uiPayloadHigh,

uint uiPayloadLow)

Arguments

uiPayloadHigh Event type and data; encoded in two 16-bit entities:

puiPayloadHigh[15..0] contains the event type
described in Table 24 - OnMessageEvent Message
Types

puiPayloadHigh[31..16] contains event-type specific
codes described inTable 25 - Predefined Application
Message Event

Session API

1040-0012 Revision Q 226

uiPayloadLow Event data

Comments

Jobs can use instructions that create "events" that can be sensed by an
application. Events are also generated when exception conditions occur
on the SMC.

Events are used to communicate asynchronous data from the controller
back to the application. Events are normally produced as a result of the
controller executing a Begin Job, End Job, or Application Event instruction.
Exception conditions may also create an event such as the response to an
Abort message, servo error detection, etc. The data that classifies the
event are passed back as two 32-bit payloads from the controller.

See Also OnDataEvent

Job messages are created using the ApplicationEvent job command. This command takes two

arguments, the first of which is a user defined type code, and the second of which is an arbitrary 32-

bit parameter. When this command is encountered by the marking engine controller, a Message Event

is created. The message type code is passed back in puiPayloadHigh[31..16], and the parameter in

puiPayloadLow[31..0]. The system pre-defines some ApplicationEvent message type codes as

indicated in Table 24 - OnMessageEvent Message Types on page 226.

Table 24 - ONMESSAGEEVENT MESSAGE TYPES

Message Type Value Description puiPayloadHig
h[31..16]

Reserved All values not otherwise
defined in this table

Reserved for future
Cambridge
Technology use

Reserved

Session API

1040-0012 Revision Q 227

Table 24 - ONMESSAGEEVENT MESSAGE TYPES

Message Type Value Description puiPayloadHig
h[31..16]

FixedDataProcessed 0x000F(15) Fixed data update
complete

0

JumpTimeCalDone 0x0013(19) Calibration of jump-
times complete

0

BeginJob 0x0041 (65) The BeginJob
instruction has been
executed

0

EndJob 0x0042 (66) The EndJob
instruction has been
executed

0

ApplicationEvent 0x5040 (20544) User defined
application event or
predefined system
application event (see
Table 25 - Predefined
Application Message
Event)

User or
predefined
system
specific

Application events are further refined by the uiPayloadHigh[31..16] value as defined in the following

table.

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event
Code

Description uiPayloadLow[31..0]

Reserved
application event
codes

Range 0x0000 – 0x0100 are reserved for CT
use. All other codes not mentioned here are
available to the user.

Varies

Session API

1040-0012 Revision Q 228

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event
Code

Description uiPayloadLow[31..0]

0x0008 (8) Digital Input Event. See SetDigitalInputConfig Digital input bit-map of
the pin that caused the
event

0x0014 (20) MOTF Trigger event Value of the trigger
counter when the pin
state change was detected

Exception event
codes

Generated by the SMC if exception conditions
are detected at run-time. Code range between
0x2328 – 0x270F (9000 – 9999) are reserved for
CT use.

Varies

0x2328 (9000) Command processing was aborted 0

0x2329 (9001) Abort message was processed 0

0x232A (9002) Command FIFO empty time-out 0

0x232C (9004) Bad opcode was received 0

0x232E (9006) WriteDigital bad argument 0

0x232F (9007) LaserPower bad argument 0

0x2330 (9008) <set id='ActiveCorrectionTable'> bad argument 0

0x2331 (9009) <set id='LaserPulse'> bad argument 0

0x2332 (9010) WaitForIO bad argument 0

0x2333 (9011) WaitForIO command time-out 0

0x2334 (9012) <set id='LaserStandby'> bad argument 0

0x2336 (9014) Time-out waiting for the laser to go active 0

0x2337 (9015) <set id='MotfDirection'> bad argument 0

0x2338 (9016) <MotfEnable> bad argument 0

Session API

1040-0012 Revision Q 229

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event
Code

Description uiPayloadLow[31..0]

0x2339 (9017) Performance Configuration File Pulse Width
bad argument

0

0x233A (9018) Performance Configuration File Pulse bad
argument

0

0x233B (9019) <set id='FieldOrientation'> bad argument 0

0x233D (9021) Interlock was tripped Interlock bit mask:

uiPayloadLow [3..0] =
Interlock[4..1]

0x233E (9022) WriteAnalog bad argument 0

0x233F (9023) <set id='TransformEnable'> bad argument 0

0x2342 (9026) <set id='MotfMode'> bad argument 0

0x2343 (9027) RasterMode not supported 0

0x2344 (9028) JobTimer bad argument 0

0x2346 (9030) An external Abort was processed 0

0x2393 (9107)
<set id='JumpAbsList'> bad argument
<set id='MarkAbsList'> bad argument

0

0x2394 (9108) Settle check timeout (JumpAndFireList) Status register value being
tested

0x2395 (9109) Laser On Time is zero in JumpAndFireList 0

0x2397 (9111) GSBus/XY2 Status fault detected Status register value being
tested

0x2398 (9112) L2INST GEN Memory creation failed 0

0x2399 (9113) L2INST Invalid vector args 0

0x239A (9114) L2INST Invalid Circle args 0

Session API

1040-0012 Revision Q 230

Table 25 - PREDEFINED APPLICATION MESSAGE EVENT CODES

Application Event
Code

Description uiPayloadLow[31..0]

0x239C (9116) L2INST Invalid Point args 0

0x239D (9117) L2INST Invalid Spiral args 0

0x239E (9118) L2INST Servo params creation failed 0

0x239F (9119) L2INST Vect params creation failed 0

0x23A0 (9120) L2INST Circle params creation failed 0

0x23A1 (9121) L2INST Point params creation failed 0

0x23A2 (9122) L2INST Spiral params creation failed 0

0x23A3 (9123) L2INST Laser params creation failed 0

0x23A4 (9124) L2INST Output Vectors failed 0

0x23A5 (9125) L2INST Output Circles failed 0

0x23A6 (9126) L2INST Output Points failed 0

0x23A7 (9127) L2INST Output Spirals failed 0

0x23A9 (9129) Jump-time calibration was not performed 0

0x23AA (9130) Jump failed to settle in open-loop Number of points

Special Notes on Interlocks and Handling Exceptions

Exceptions generally indicate that something bad has happened and that marking operations should

be terminated as quickly as possible. This is especially important when high-power lasers are involved.

The SMC provides for fast controlled shut-down of laser operations whenever an exception is detected

by the hardware. Breaks in the interlock connectivity can be conditioned to shut down the laser and

galvo motions and generate an exception event to the host application to notify it that the break

occurred.

Session API

1040-0012 Revision Q 231

When a conditioned interlock trips, or any other hardware-detectable exception condition occurs, the

marking engine controller immediately stops processing the vector stream, turns off the laser, and

stops the galvo motion. It then disables the Interlock sensing function to avoid repeated notifications

and sends an exception event message to the host application. If an exception occurs, the job cannot

be restarted from where it left off.

The Interlock sensing function must be re-enabled after the fault condition is cleared. The following

figure illustrates a sample protocol for handling an interlock break.

Main Job Loop

Ensure that interlock
switches are closed

Arm interlock channel using
a priority message

Send job(s) to the SMC

<Data type=’ServiceData’
<Msg id=’SetInterlockEnable’>0x14</Msg>
</Data>

// For example, if INTLOCK3 is being used:

A

Interlock Handling

Interlock tripped:
App receives Interlock

exception message: 0x233D
(9021)

App alerts operator with
appropriate dialog box

Operator clears interlock
condition and restarts job

A

Figure 19 - INTERLOCK SEQUENCING

Session API

1040-0012 Revision Q 232

6.8.3 OnDataEvent

The OnDataEvent command is used to pass error details or requested data back to an application.

Priority messages that return variable data do so by generating an OnData event. In general, a request

for information is made by sending a Priority Data message (e.g., GetRegisters). When the SMC

processes the message, it sends the requested data back through the OnData event channel.

The system will also generate a Data Event if there is a Job data syntax error. In this case, the suspected

fragment of XML is returned as the event data along with an explanatory message.

OnDataEvent

Purpose Returns data requested from the SMC

Syntax

OnDataEvent(uint uiDataID,
uint uiErrorCode,
string pstrData)

Arguments

uiDataID Identifier of the data being returned. The identifiers
are as follows;

0 - Reserved

1 - Client Errors

2 - Server Errors

3 - Registers Data

4 - Reserved

uiErrorCode Error code returned from the SMC; no error == 0

pstrData The data sent by the API. This data can originate from:

• The API in the case of an XML command parsing
error

• The server in the case where a SW exception is
detected

• The SMC HW in the case where register data is
requested

The string supplied contains an XML representation of
the data.

Session API

1040-0012 Revision Q 233

OnDataEvent

Comments

• The system will generate a Data Event if there is a Job data syntax
error. In this case, the suspected fragment of XML is returned as
the event data along with an explanatory message.

• See GetRegisters Priority Message OnDataEvent Response for an
example of the type of data returned through this method.

See Also OnMessageEvent

6.9 PRIORITY COMMUNICATION

Occasionally it may be necessary to send urgent commands to the controller that must bypass the data

stream that is full of job data. sendPriorityData provides this mechanism. This mechanism is used to

query an SMC for on-demand status information in cases where the cycle-time of broadcast packets is

insufficient. It can also be used to pause/resume/abort a currently executing job.

6.9.1 sendPriorityData

sendPriorityData

Purpose Sends priority data to an SMC device session

Syntax
uint sendPriorityData(string pstrData

uint puiTimeout)

Arguments

pstrData The data sent to the SMC device. The string supplied
contains an XML representation of the priority request.

puiTimeout Duration for attempting call in seconds

Session API

1040-0012 Revision Q 234

sendPriorityData

Comments

An independent and parallel communication channel is provided to the
controller to pass "out-of-band" commands. This channel of
communication is used to send urgent commands to the controller, such as
an Abort message or pause/resume messages.

The method returns as soon as the message is sent, not when the
operation is actually performed on the target. Some messages, however,
create response events when the action is completed, such as "Abort" and
"GetRegisters".

See also getPriorityData

6.9.2 PRIORITY MESSAGES

The following table contains descriptions of priority messages that can be sent using the

sendPriorityData method.

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Abort Abort based on the reason provided. This reason causes alternative
action to be taken on the SMC device. Abort messages result in an
On Message event being generated when the operation completes
on the SMC. (Refer to Section 6.8.2 (“OnMessageEvent”) on page
225 for more information.) The reason can be either of the following:

• Job - Abort the job that is currently running

• Terminate - Abort the currently running job and terminate the
current session connection

XML Example: <Data type='ServiceData' rev='1.1'>
 <Msg id='Abort' reason='Terminate'/>
 </Data>

Session API

1040-0012 Revision Q 235

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Restart Performs a hardware reset of the SMC. The session will be
disconnected and must be re-established before additional
communications is possible.

XML Example: <Data type='ServiceData'>
 <Msg id='Restart'/>
 </Data>

Suspend Suspends the execution of the job. The job is paused at the next
location where the lasers are off. If a Mark is currently in progress
(including poly-vector mark), it is allowed to complete.

XML Example: <Data type='ServiceData'>
 <Msg id='Suspend'/>
 </Data>

Resume Job execution is permitted to continue.

XML Example: <Data type='ServiceData'>
 <Msg id='Resume'/>
 </Data>

GetRegisters Sends a request to the SMC to return the current values of several
hardware registers on the module. Data is returned via a session
OnData event message. (Refer to Section 6.8.3 (“OnDataEvent”) on
page 232 for more information.) The register data is parsed into
named register entities if the attribute ‘raw’ is set to false (the
default). If raw is set to true, the register data is returned in an
indexed list of raw register values. See section 6.9.4 (“GetRegisters
Priority Message OnDataEvent Response”) on page 244 for
information regarding the returned data.

Note: Raw lists are for advanced users only. (Please consult with
Cambridge Technology Technical Support if you want to use raw
lists.)

XML Example: <Data type='ServiceData'>
 <Msg id='GetRegisters' raw='true'/>
 </Data>

Session API

1040-0012 Revision Q 236

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetInterlockEnable Enables or disables the interlock function of the SMC based on the
"config" bit pattern.

• Bits[3..0] represent the interlock signals INTLOCK[4..1].

• A "1" enables a transition of the interlock signal going from the
unasserted to the asserted state to generate an "Interlock"
exception and shut down an active job provided that bit 4 is
also asserted.

• Bit[4] is the master enable bit for the interlock function. If this
bit is set, then all enabled interlock signals should be de-
asserted at power-up time or else an immediate "Interlock"
exception will be generated when this parameter is
processed.

If an interlock that is enabled is tripped, the condition that caused
the trip must be cleared before a job can be restarted without
generating another "Interlock" exception.

The current state of the interlock physical signals can be seen in the
Broadcast Status data as element Interlock.

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetInterlockEnable' config='0x14'/>
 </Data>
 or
 <Data type='ServiceData'>
 <Msg id='SetInterlockEnable'>0x14</Msg>
 </Data>

Session API

1040-0012 Revision Q 237

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetInterlockPolarity Sets the polarity of the interlock signals of the SMC based on the
"config" bit pattern.

Bits[3..0] represent the interlock signals INTLOCK[4..1]. A "1"
corresponds to no current flowing through the interlock optical
isolator. This condition is the interlock open state.

XML Example: <Data type='ServiceData'>

 <Msg id='SetInterlockPolarity' config='0x4'/>

 </Data>
 or
 <Data type='ServiceData'>
 <Msg id='SetInterlockPolarity'>0x4</Msg>
 </Data>

SetOffset (Obsolete) Sets the run-time X, Y, and Z offsets to be applied to the
vectors if the TransformEnable job command had been set to the
enabled state.

Otherwise, this message has no effect. The Z offset is optional and if
not present it is not changed. Units are defined by the <set
id='Units'> command

XML Example: <Data type='ServiceData'>
 <Msg id='SetOffset'>200; 300; 100</Msg>
 </Data>

StopCurrentSequence (Reserved for future use) Stops a continuously executing sequence at
the end of its current iteration. Other sequences that are queued are
run in order.

XML Example: <Data type='ServiceData'>
 <Msg id='StopCurrentSequence'></Msg>
 </Data>

StopAllSequences (Reserved for future use) Stops a continuously executing sequence at
the end of its current iteration. Any other sequences that are queued
are not run.

XML Example: <Data type='ServiceData'>
 <Msg id='StopAllSequences'></Msg>
 </Data>

Session API

1040-0012 Revision Q 238

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

Flush (Reserved for future use) Flushes all queued job data. Data that has
reached the SMC marking engine is allowed to complete execution.

XML Example: <Data type='ServiceData'>
 <Msg id='Flush'></Msg>
 </Data>

SetRTJobTransform2D Sets the run-time coordinate transform {Angle, Xoff, Yoff} to be
applied to the vectors if the TransformEnable job command has been
set to the id value. If the TransformEnable job command has not
been set to the id value, this message has no effect. The arguments
are the following:

id 1 or 2 to select between two separate transform
data sets

Angle Angle in degrees to rotate

Xoff,Yoff X and Y offset values to apply in user units

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetRTJobTransform2D'>1; 25.0; 0.0;

5.0</Msg> </Data>

SetRTjobTransformMatrix Sets the run-time coordinate transform matrix {M00, M01, M10,
M11, Xoff, Yoff} to be applied to the vectors if the TransformEnable
job command had been set to the id value. If the TransformEnable
job command has not been set to the id value, this message has no
effect. The arguments are the following:

id 1 or 2 to select between two separate transform
data sets

M00 -
M11

2x2 transform matrix elements

Xoff,Yoff X and Y offset values to apply in user units. Offsets
are applied after the matrix multiply operation.

XML Example: <Data type='ServiceData'>
 <Msg id='SetRTJobTransformMatrix'>
 1; 0.707; -0.707; 0.707; 0.707; 5.0; 25.0
 </Msg>
 </Data>

Session API

1040-0012 Revision Q 239

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

ExecuteJob Initiates the execution of a job previously stored on the SMC. The
arguments are the following:

location 0 (local Flash), 1 (USB flash)

mode 0 (execute once), 1 ((execute continuous)

name File name of job stored on the SMC

XML Example: <Data type='ServiceData'>
 <Msg id='ExecuteJob' location='0'
 mode='1' name='square.job'></Msg>
 </Data>

Session API

1040-0012 Revision Q 240

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetDigitalInputConfig Sets the event-generating configuration of the digital inputs. The
three arguments are encoded as follows:

• arg1 - Bit-mask that enables a particular input to generate an
event on a state change

• arg2 and arg 3 - Polarity mask pair where the corresponding bit
positions encode the event-generating behavior of the
corresponding input as follows:

arg2-bit arg3-bit

0 0 Notify if transitioning to a low state

1 0 Notify if transitioning to a high
state

X 1 Notify if transitioning to either
state

The bit mappings to signals are as follows:

bits[3..0] AUX_GPI[4..1]_ISO

bits[5..4] AUX_START_ISO, START

bits[9..6] INTERLOCK[4..1]

(LASER_STAT2, LASER_STAT1, LASER_STAT0,
ABORT)

bits[31..16] EXTAUXIN[15..0]

A transition from one to zero corresponds to a state of no current
flowing through the isolator to a state of current flowing through the
isolator.

XML
Example:

<Data type='ServiceData'>
 <Msg id='SetDigitalInputConfig'>0x0; 0x1;

0x1</Msg> </Data>

GetCalFactors Retrieves the current calibration factors used by the SMC. See
section 6.9.5, “GetCalFactors Priority Message OnDataEvent
Response” for details on the information returned.

XML Example: <Data type='ServiceData'>
 <Msg id='GetCalFactors'/>
 </Data>

Session API

1040-0012 Revision Q 241

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

SetCalFactors Set new calibration factors for use by the SMC. These override the X,
Y, and Z calibration factors currently in use for active correction
tables 1 & 2, respectively. These values are used to convert SMD,
SMAPI, and ScanScript job coordinates to bits units used by the
hardware. These values also update the API for when the Units
command is not set to Bits units.

XML Example: <Data type='ServiceData'>

 <Msg id='SetCalFactors'>

 <XKFactor1>533.2332</XKFactor1>

 <YKFactor1>533.2332</YKFactor1>

 <ZKFactor1>650.1334</ZKFactor1>

 <XKFactor2>450.8765</XKFactor2>

 <YKFactor2>450.8765</YKFactor2>

 <ZKFactor2>520.4524</ZKFactor2>

 <XKFactor3>533.2332</XKFactor3>

 <YKFactor3>533.2332</YKFactor3>

 <ZKFactor3>650.1334</ZKFactor3>

 <XKFactor4>450.8765</XKFactor4>

 <YKFactor4>450.8765</YKFactor4>

 <ZKFactor4>520.4524</ZKFactor4>

 </Msg>
 </Data>

SyncFileSystem Writes any file data buffered in memory on the SMC out to disk. After
sending files to SMC using FTP or after other local (to the SMC) file
operations, the content of the file may still be cached in memory and
not actually be writen to disk. If the power to the SMC is removed,
the file content may be lost.

XML Example: <Data type='ServiceData'>

 <Msg id='SyncFileSystem'/>

 </Data>

Session API

1040-0012 Revision Q 242

Table 26 - PRIORITY MESSAGE DESCRIPTIONS

Message Description/XML Example

StartLogging Send raw commands received by SMC marking engine to host
computer for logging purpose. The host computer is identified by
{hostIPAddress, port}.

 hostIPAddress: Host computer IPv4 address

port: IP port number

XML Example: <Data type='ServiceData'>

 <Msg id='StartLogging' Port='5032'
 HostIPAddress='192.168.100.1'/>

 </Data>

StopLogging Stop sending raw commands received by SMC marking engine to host
computer. It is paired with StartLogging priority message.

XML Example: <Data type='ServiceData'>

 <Msg id='StopLogging'/>

 </Data>

PowerScale Adjusts the laser power level by the value in the message. The laser
power of an operating job will be immediately scaled by the factor
upon receipt of the message.

XML Example: <Data type='ServiceData'>

 <Msg id='PowerScale'>0.9</Msg>

 </Data>

WriteDigital Writes the specified digital output port with the specified value. Port
numbering and value descriptions are the same as for the job
command <WriteDigital>.

XML Example: <Data type='ServiceData'>
 <Msg id='WriteDigital'>0, 1</Msg>

 </Data>

Session API

1040-0012 Revision Q 243

6.9.3 getPriorityData

Some priority messages are designed to fetch information from the SMC on demand. Such information

is returned to the application asynchronously through the use of Data Events (see Section 6.8.3

(“OnDataEvent”) on page 232). This asynchronous request/response scenario is not always convenient

for an application, in which case the getPriorityData method can be used. The getPriorityData method

directly returns the XML string representing the requested data without the application arming for a

Data Event. The calling thread is blocked until the response packet has arrived from the board.

getPriorityData

Purpose
Sends a priority data message to an SMC device session and waits for a
response

Syntax
uint getPriorityData(string pstrData

out string pstrRegData
uint puiTimeout)

Arguments

pstrData A properly formed priority data request

pstrRegData The XML data returned by the SMC device

puiTimeout Duration for attempting call in seconds. Minimum 1
second.

Comments

The message is sent and the requested data is returned to the application.

This method blocks the calling thread until the data is returned or a
timeout occurs.

See GetRegisters Priority Message OnDataEvent Response for an example
of the type of data returned through this method.

See also sendPriorityData

Session API

1040-0012 Revision Q 244

6.9.4 GetRegisters Priority Message OnDataEvent Response

Data is returned asynchronous from the request.

Register Data is returned as follows:

<Data type='HardwareState' rev='2.0'>

 <FpgaConfig>0xD</FpgaConfig> Advanced use only. Contact Cambridge
Technology Technical Support.

 <AuxIO_ID>0x0</AuxIO_ID> 0 = AuxDIO module not in use. 1 =
module present.

 <MOTFFrequency>0</MOTFFrequency> Deprecated. MOTF 0 speed
(counts/10ms) Use MOTF0Frequency.

 <MOTF0Frequency>0</MOTF0Frequency> MOTF 0 speed (counts/1ms)

 <MOTF1Frequency>0</MOTF1Frequency> MOTF 1 speed (counts/1ms)

 <ServoStatus>0x0</ServoStatus> Depends on the active scan head
interface type. The interface type in
encoded in Bits[31..28]:

0 = No head detected

1 = XY2-100

2 = GSBus

3 = NVL-100

4 = SL2-100

Bits[15..0] carry detected status

XY2-100: The status word read from
the head 1 port. Head vendor specific.

GSBus: Divided into 4-bit nibbles. Each
nibble: Bit 0 = OK, Bit 1 = READY, Bit 2 =
INPOS, Bit 4 = Reserved.

For 2 axis heads: Bits[3..0] = X1,
Bits[7..4] = Y1, Bits[11..8] = X2,
Bits[15..12] = Y2

For 3 axis heads: Bits[3..0] = X, Bits[7..4]
= Y, Bits[11..8] = Z

NVL-100: Bit[0] = X READY, Bit[1] = Y
READY, Bit[2] = Z READY

Session API

1040-0012 Revision Q 245

SL2-100: Undefined

 <XDAC>-500</XDAC>

 <YDAC>-500</YDAC>

 <ZDAC>0</ZDAC>

 <A1DAC>16</A1DAC>

 <A2DAC>0</A2DAC>

 <XY2Chan1>-500</XY2Chan1>

 <XY2Chan2>-500</XY2Chan2>

 <XY2Chan3>0</XY2Chan3>

 <XY2Status>0x0</XY2Status>

 <LaserTiming>50</LaserTiming>

 <LaserPower>0</LaserPower>

Timing resolution in 20nsec ticks

Current power setting

 <MOTFPosition>0</MOTFPosition> Deprecated. Current MOTF 0 scaled
count value. Use MOTF0Position

 <MOTF0Position>0</MOTF0Position> Current MOTF 0 scaled count value. If
the MotfCalFactor is set to 1.0, this
value is the actual encoder count for
MOTF Port 0

 <MOTF1Position>0</MOTF1Position> Current MOTF 1 scaled count value. If
the MotfCalFactor is set to 1.0, this
value is the actual encoder count for
MOTF Port 1

 <DIO>0x3FF</DIO> DIO Port State

Bits[3..0] == AUX_GPI[4..1]_ISO

Bits[5..4] == AUX_START_ISO, START

Bits[9..6] == INTERLOCK[4..1]

Bits[13..10] == AUX_GPI4..1]_ISO

Bits[17..14] == JOBACTIVE,
ERROR/NREADY, BUSY, LASING

 <DIO.IN>0xF</DIO.IN> Bits[3..0] == AUX_GPI[4..1]_ISO

 <DIO.OUT>0x0</DIO.OUT> Bits[3..0] == AUX_GPO[4..1]

Session API

1040-0012 Revision Q 246

 <DIO.Control>0x1</DIO.Control> Bits[4..0] == JOBACTIVE,
ERROR/NREADY, BUSY, LASING, START

 <DIO.Interlock>0xF</DIO.Interlock> Bits[3..0] == INTLOCK[4..1]

 <JobTimer>0</JobTimer>

 <XVectCmd>-500</XVectCmd>

 <YVectCmd>-500</YVectCmd>

 <ZVectCmd>0</ZVectCmd>

 <AuxIO_Ana1>0x20</AuxIO_Ana1> Reserved for future use. Optional
auxiliary I/O module with analog sub-
option.

 <AuxIO_Ana2>0x0</AuxIO_Ana2> Reserved for future use. Optional
auxiliary I/O module with analog sub-
option.

 <AuxIO_DIn>0xFC</AuxIO_DIn> Optional auxiliary I/O module

 <AuxIO_DOut>0xC0</AuxIO_DOut> Optional auxiliary I/O module

</Data>

6.9.5 GetCalFactors Priority Message OnDataEvent Response

Data is returned asynchronous from the
request.

CalFactor Data is returned as follows:

<Data type=CalFactors rev='1.0'>

 <XKFactor1>300.8149</XKFactor1>
 <YKFactor1>300.8149</YKFactor1>
 <ZKFactor1>231.518</ZKFactor1>
 <XKFactor2>300.8149</XKFactor2>
 <YKFactor2>300.8149</YKFactor2>
 <ZKFactor2>231.518</ZKFactor2>
 <XKFactor3>300.8149</XKFactor3>
 <YKFactor3>300.8149</YKFactor3>
 <ZKFactor3>231.518</ZKFactor3>
 <XKFactor4>300.8149</XKFactor4>

These are the X, Y, and Z calibration factors
currently in use for active correction tables 1 - 4,
respectively. These values are used to convert
SMD, SMAPI, and ScanScript job coordinates to
bits units used by the hardware. These are also
automatically read at session login time to
initialize the API for when the Units command is
not set to Bits units

Session API

1040-0012 Revision Q 247

 <YKFactor4>300.8149</YKFactor4>
 <ZKFactor4>231.518</ZKFactor4>

</Data>

6.10 API ERROR CODES

Errors returned by the Session API are defined in the following table. The error descriptions can be

accessed through the use of the method GetErrorCodeDescription.

GetErrorCodeDescription

Purpose Returns a string describing the meaning of the error code.

Syntax GetErrorCodeDescription (uint uiErrorCode)

Arguments uiErrorCode The error code returned by one of the API methods

Comments
Broadcast and Session methods return a code denoting the success (return
value = 0), or failure of the method (return value != 0). A string describing
the code can be fetched using this function.

See Also

Remote Control API

1040-0012 Revision Q 248

7 REMOTE CONTROL API

There are three basic modes of operation for the SMC:

1. LAN-based streaming mode, where job data is managed on a host computer and sent to the

SMC for immediate execution

2. Local mode, where an attached pendant is used to control the selection and execution of

locally stored jobs

3. Remote mode, where a LAN-based supervisory interface can interact with the SMC and

control all of the local mode functions

Remote mode is implemented as a text-based messaging interface over a normal TCP/IP socket

connection. Messages are sent to the SMC as strings terminated with a line-feed character. All

messages sent to the SMC are acknowledged with a line-feed terminated string.

All read or Get functions can be executed concurrently with other activities that the board may be

performing, such as running jobs over the streaming interface. These functions would typically be

associated with administrative functions such as examining passwords, networking parameters, job

lists, etc. If modifications need to be made, or if actual execution control is required via the remote

control interface, then a client application must "request control" or ownership of the module via the

Remote Control API protocol command TakeHostControl.

7.1 TCP/IP INTERFACE

Remote control of the SMC can be established by any host computer that supports TCP/IP networking.

This includes computers running Microsoft Windows, Linux, or other Unix derivatives. Communication

with the board is established by opening a socket connection using the SMC IP address on port number

12500. The IP address can be learned by using the BroadcastAPIMethods to access the SysInfo data

packets that are broadcast by the SMC. Alternatively, if the SMC is configured with a static IP address,

broadcast monitoring is not required.

When a connection is established, the SMC transmits a "Welcome banner". This string must be read

from the socket before bi-directional communication can be established.

Remote Control API

1040-0012 Revision Q 249

7.2 RS232 INTERFACE

Remote control of the SMC can also be established by any host computer that supports RS232 serial

communications. Communication is established by opening a COM port connection on the local

computer that is connected to the SMC. The SMC COM port that is used for the protocol is controlled

by settings in the Administration Configuration file. See the description of APIPort in Table 10 -

Administration Configuration on page 45 for additional details.

If a single new-line character is sent to the remote control port, the SMC transmits a "Welcome

banner". This string can be used to verify that communication has been established.

7.3 PROTOCOL SPECIFICATION

The following tables define the valid remote control commands and responses. Some commands take

arguments. In such cases, the arguments are separated from the command and from each other by a

"," (comma) character. If commands yield responses that have multiple values, the values are comma

separated.

Note that all commands can be either text strings or numeric identifiers and are expressed in the table

enclosed in quotes (" "). The quotation characters are NOT part of the command. This is also true for

responses. Variable information is expressed as <variable> which is also a string.

There are two command modes can be used: basic mode and enhanced mode. All the commands listed

in section 6.3.1 are expressed in basic mode.

The basic mode: the command string is sent to the SMC, and SMC sends back a response string. This

mode poses a command-response synchronization problem when commands are send quickly. For

example, the source sends command 1 to the SMC, and waits for response 1. If the SMC takes longer

to respond, then the source may timeout and get no response. Next, the source may clear the receive

buffer, send command 2 to SMC and waits for response 2. If at this time SMC completes command 1

and sends back response 1, then source will wrongly assume response 1 as response 2.

The enhanced mode: each command string is prefixed with a ‘$’ character, followed by a

UniqueNumber chosen by the API user, followed by a ‘:’ character. The SMC will use the same

“$UniqueNumber:” prefix with the response. For asynchronous event messages, the message is

prefixed with “#EventUniqueNumber:” set of characters. EventUniqueNumber is generated

Remote Control API

1040-0012 Revision Q 250

automatically by the SMC. If an event message has multiple lines, each line will have the same prefix.

The enhanced command mode is the preferred mode. Below is a short example:

Command string Response string Note

$1008:GetHostControlStatus $1008:5 Host not in control

$1009:TakeHostControl $1009:0 Command success

… …

 #1002:65 Event BeginJob

 #1003:66 Event EndJob

Note also that all commands and arguments are case-sensitive.

RemoteAdminstrator.exe is a sample program that uses the Remote API to access the SMC. It is

located in C:\Program Files\Cambridge Technology\Client.

7.3.1 CONTROL AND COMMUNICATIONS COMMANDS

Abort (1) Command

Purpose Stops the execution of a job

Implementation "Abort" or "1"

Parameters None

Returns "0" – Command acknowledge

Comments
Immediately stops the execution of a running job and sets the JobRunning
status to "Idle"

See also N/A

Remote Control API

1040-0012 Revision Q 251

TakeHostControl (2) Command

Purpose Requests exclusive control of the SMC

Implementation "TakeHostControl" or "2"

Parameters None

Returns "0" – Command acknowledge

Comments
This command will cause an abort of any actively running job. Use the
GetJobStatus command to verify that the SMC job status is "Idle" before
issuing this command.

See also ReleaseHostControl, GetJobStatus

ReleaseHostControl (3) Command

Purpose Releases exclusive control of the SMC to the LANStream host interface

Implementation "ReleaseHostControl" or "3"

Parameters None

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• After this command is executed, jobs may be streamed to the SMC via
the LANStream host interface.

See also TakeHostControl

GetHostControlStatus (4) Command

Purpose Returns the current SMC control status of this remote control session

Implementation "GetHostControlStatus" or "4"

Remote Control API

1040-0012 Revision Q 252

GetHostControlStatus (4) Command

Parameters None

Returns

"125" – HOST_IN_CONTROL (control has been granted to this session)

"126" – HOST_NOT_IN_CONTROL (this session is not in exclusive control of
the SMC)

See also TakeHostControl, ReleaseHostControl

GetHostInControl (5) Command

Purpose Returns the current host interface that has exclusive control of the SMC

Implementation "GetHostInControl" or "5"

Parameters None

Returns

"Pendant" – Control has been granted to the pendant interface.

 "LANStream" – Control has been granted to the streaming LAN interface.

 "LAN" – Control has been granted to the LAN remote control interface.

See also TakeHostControl, ReleaseHostControl

EnableBroadcasting (6) Command

Purpose (Obsolete) Enables or disables the broadcast function of the SMC

Implementation "EnableBroadcasting <enable-state>" or "6, <enable-state>"

Parameters

<enable-state> Specifies whether the broadcast function of the SMC is
enabled or disabled

Value range 0 = Disabled

1 = Enabled

Returns "0" – Command acknowledge

Remote Control API

1040-0012 Revision Q 253

EnableBroadcasting (6) Command

Comments
• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

See also TakeHostControl

LoadHardwareDefaults (7) Command

Purpose Sets the current operating parameters of the SMC to their default values

Implementation "LoadHardwareDefaults" or "7"

Parameters None

Returns "0" – Command acknowledge

Comments
• Before this command can be executed, the host must have exclusive

control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

See also TakeHostControl

HardwareReset (8) Command

Purpose Forces a hardware reset of the SMC

Implementation "HardwareReset" or "8"

Parameters None

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• The board will reboot as if power were just applied. Any IP
addressing changes will be applied.

Remote Control API

1040-0012 Revision Q 254

HardwareReset (8) Command

See also TakeHostControl

GetRemoteIP (9) Command

Purpose Returns the IP address of the LAN stream host that has control of the SMC

Implementation "GetRemoteIP" or "9"

Parameters None

Returns Remote IP address in dot notation (e.g., 192.168.101.2)

Comments If no host has control, the address "0.0.0.0" is returned.

See also N/A

GetKFactor (10) Command

Purpose

Returns the calibration factor for the X-axis (in bits/mm) as stored in the
correction table file assigned to CorrFile1 as defined in the Control
Configuration file.

Note: Unless a different Y-axis calibration factor is specified in the
correction table file, the value returned by this command is also the Y-axis
calibration factor.

Implementation "GetKFactor" or "10"

Parameters None

Returns KFactor in floating-point notation

See also GetYKFactor, GetZKFactor

Remote Control API

1040-0012 Revision Q 255

SetPerformanceGlobals (14) Command

Purpose Sets factors to alter the run-time performance of the system.

Implementation

"SetPerformanceGlobals <mark-speed-adjust>,<laser-power-adjust>,
<pulse-width-adjust>,<pulse-period-
adjust>,<orientation>,
<X-offset>,<Y-offset>,<Z-offset>"

 or

"1
4

<mark-speed-adjust>,<laser-power-adjust>,<pulse-width-adjust>,
<pulse-period-adjust>,<orientation>,<X- offset>,<Y-offset>,<Z-offset>"

Parameters

<mark-speed-adjust> – Multiplier for MarkSpeed 0.5 - 1.5;
 specify "NOP" if no change is desired.

<laser-power-adjust> – Multiplier for LaserPower 0.8 - 1.2;
 specify "NOP" if no change is desired.

<pulse-width-adjust> – Multiplier for laser ON pulse width 0.5 - 1.5;
 specify "NOP" if no change is desired.

<pulse-period-
adjust>

– Multiplier for laser on pulse period 0.5 - 1.5;
 specify "NOP" if no change is desired.

<orientation> – Field orientation in degrees 0, 90, 180, 270;
 specify "NOP" if no change is desired.

<X-offset> – X-axis offset in bits -8388608 – 8388607;
 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

<Y-offset> – Y-axis offset in bits -8388608 – 8388607;
 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

Remote Control API

1040-0012 Revision Q 256

SetPerformanceGlobals (14) Command

<Z-offset> – Z-axis offset in bits -8388608 - 8388607;
 specify "NOP" if no change is desired.

 The offset can be specified in mm units by using a

 Decimal place “.” in the number. Scaling to “bits”

 is done using head 1 calibration factors.

Returns "0" – Command acknowledge

Comments
These factors alter the specified marking properties without the need for
changing the job. These values are volatile and will not be valid if the SMC
is reset.

See also ResetPerformanceGlobals

ResetPerformanceGlobals (15) Command

Purpose
Resets the run-time performance modification parameters to their unity
values.

Implementation "ResetPerformanceGlobals,<persist-to-file>" or "15,<persist-to-file>"

Parameters

<persist-to-file> Specifies whether to write reset values to the
Performance Globals configuration file.

Value range 0 = Do not write reset values to the Performance Globals configuration
file.

1 = Write reset values to the Performance Globals configuration file.

Returns "0" – Command acknowledge

Comments
The unity values result in no run-time modification to job-specified
marking parameters.

See also SetPerformanceGlobals

Remote Control API

1040-0012 Revision Q 257

OpenCOMPort (16) Command

Purpose Opens the specified serial I/O COM port on the SMC

Implementation

"OpenCOMPort,<port-ID>,<baud-rate>,<data-bits>,<parity>,<stop-
bits>,<flow-control>"

 or

"16,<port-ID>,<baud-rate>,<data-bits>,<parity>,<stop-bits>,<flow-
control>"

Parameters

<port-ID> The serial I/O COM port to be opened

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

<baud-rate> The baud rate for the serial I/O COM port specified in
<port-ID>

Value range 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
115200, 128000, or 256000

<data-bits> The data bits for the serial I/O COM port specified in <port-
ID>

Value range 5, 6, 7, or 8

<parity> The parity for the serial I/O COM port specified in <port-
ID>

Value range Even, Odd, None, Mark, or Space

<stop-bits> The stop bits for the serial I/O COM port specified in <port-
ID>

Value range 1, 1.5, or 2

<flow-control> The flow control for the serial I/O COM port specified in
<port-ID>

Remote Control API

1040-0012 Revision Q 258

OpenCOMPort (16) Command

Value range None, XonXoff, CTS_RTS, or DSR_DTR

Returns "0" – Command acknowledge

Comments

• This command is available only if the system is configured for
accepting streaming job data over Ethernet. The specified COM
port is opened and is available for serial I/O.

• This operation is intended to permit out-of-band communication to
serial-port-based automation devices or laser systems.

• A normal configuration might be specified as
OpenCOMPort,2,38400,8,None,1,None

• Only COM port-ID 1 has hardware flow control support.

See also COMWriteLine, CloseCOMPort

CloseCOMPort (17) Command

Purpose Closes a serial I/O COM port on the SMC

Implementation "CloseCOMPort,<port-ID>" or "17,<port-ID>"

Parameters

<port-ID> The serial I/O COM port to be closed

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

Returns "0" – Command acknowledge

Comments The COM port is closed and no longer available for serial I/O

See also COMWriteLine, OpenCOMPort

Remote Control API

1040-0012 Revision Q 259

COMWriteLine (18) Command

Purpose Writes the string argument to the COM port on the SMC.

Implementation
"COMWriteLine,<port-ID>,<string>,<Timeout>" or "18,<port-
ID>,<string>,<Timeout>"

Parameters

<port-ID> The serial I/O COM port to be written to

Value range 0 = COM0 (OS console port on SMC main board)

1 = COM1 (Aux COM port on AUX-IO module)

2 = COM2 (Laser COM port)

3 = COM3 (N/A for SMC)

4 = COM4 (RS485 port on AUX-IO module)

<string> The string to be written to the COM port

Value range Any ASCII character string

<Timeout> Time to wait (in seconds) for a new-line terminated
response

Value range 0 - 65665

Returns

"<response string>" – Command acknowledge

"ERROR_PORT_TIMEOUT" – The return string was not received before
timeout expiration.

Comments

This operation is intended to permit out-of-band communication to serial-
port-based automation devices or laser systems. The specified port-ID must
have been opened with the command OpenCOMPort.

See also CloseCOMPort, OpenCOMPort

Remote Control API

1040-0012 Revision Q 260

SetMotfEncoderRate (21) Command

Purpose
Sets the calibration factor used to convert encoder counts to laser galvo
command bits (i.e., bits/encoder-count).

Implementation "SetMotfEncoderRate,<rate>"

Parameters
<rate> Bits per encoder-count

Value range -32768.0 to 32767.0

Returns "0" – Command acknowledge

Comments
The encoder rate relates encoder counts to how far an object travels in the
lens field in galvo command bits. In the XML API, this is referred to as
MotfCalFactor

See also N/A

GetZKFactor (27) Command

Purpose
Returns the calibration factor for the Z-axis (in bits/mm) as stored in the
correction table file assigned to CorrFile1 as defined in the Control
Configuration file.

Implementation "GetZKFactor" or "27"

Parameters None

Returns ZKFactor in floating-point notation

See also GetYKFactor, GetKFactor

GetYKFactor (28) Command

Purpose
Returns the calibration factor for the Y-axis (in bits/mm) as stored in the
correction table file assigned to CorrFile1 as defined in the Control
Configuration file.

Implementation "GetYKFactor" or "28"

Remote Control API

1040-0012 Revision Q 261

GetYKFactor (28) Command

Parameters None

Returns YKFactor in floating-point notation

See also GetKFactor, GetZKFactor

GetControllerTemp (29) Command

Purpose Returns the temperature of the SMC board.

Implementation "GetControllerTemp" or "29"

Parameters None

Returns The board temperature in degrees C.

See also

COMReadLine (30) Command

Purpose Reads a string from a COM port on the SMC.

Implementation "COMReadLine,<port-ID>,<Timeout>" or "30,<port-ID>,<Timeout>"

Parameters

port-ID Numeric port identifier

Value range 2 == COM2

3 == COM3

 Timeout How long to wait for a line terminator

 Value range 0 - 100

Returns "<Response string>"

Remote Control API

1040-0012 Revision Q 262

COMReadLine (30) Command

Comments

This operation is intended to permit out-of-band communication to serial
port based automation devices or laser systems. The specified port-ID must
have been opened with the command OpenCOMPort. Lines are expected
to be terminated with the new-line character.

See also CloseCOMPort, OpenCOMPort

GetDigitalPort (35) Command

Purpose Returns the state of the specified digital port

Implementation "GetDigitalPort, <PortID>" or "35, <PortID>”

Parameters

port-ID Numeric port identifier

Value range 0 == Current Digital I/O port

1 == Auxiliary I/O port

Returns <PortValue> (in hexadecimal notation, e.g. 0x1000233F)

Comments
Current digital I/O port bits are decoded as described in section 5.3.2
“Broadcasted Status Information”, packet tag CurrentDIO. Auxiliary I/O
bits are concatenated as 0x<AUX_GPO[15..0]><AUX_GPI[15..0]>

See also

GetCalScaleFactors (39) Command

Purpose
(Reserved for future use) Returns the current scale factors used to adjust
the Cal Factor values that affect the job geometry size

Implementation "GetScaleFactors" or "39"

Parameters N/A

Returns “<XScale>, <YScale>, <ZScale>” (in floating-point notation)

Remote Control API

1040-0012 Revision Q 263

GetCalScaleFactors (39) Command

Comments
These factors are used to alter the values of KFactor, YKFactor, and
ZKFactor when ScanMaster Designer, ScanMaster API, or ScanSript based
jobs are run.

See also SetScaleFactors

SetCalScaleFactors (40) Command

Purpose
(Reserved for future use) Sets the scale factors used to adjust the Cal Factor
values that affect the job geometry size

Implementation
"SetScaleFactors, <XScale>, <YScale>, <ZScale> " or

"40, <XScale>, <YScale>, <ZScale>” (in floating-point notation)

Parameters

XScale Multiplier for KFactor

Value range 0.0 – 10.0

YScale Multiplier for YKFactor

Value range 0.0 – 10.0

ZScale Multiplier for ZKFactor

Value range 0.0 – 10.0

Returns "0" – Command acknowledge

Comments
These factors are used to alter the values of KFactor, YKFactor, and
ZKFactor when ScanMaster Designer, ScanMaster API, or ScanSript based
jobs are run.

See also GetScaleFactors

GetHeadStatus (41) Command

Purpose Get the Galvo status (FPGA register 9)

Remote Control API

1040-0012 Revision Q 264

GetHeadStatus (41) Command

Implementation "GetHeadStatus " or "41”

Parameters N/A

Returns "0x########" – hex value, e.g. “0x1000FFFF”.

Comments

Upper 4 bits has the Interface type

0x1 - XY2-100,

0x2 - GSBus ,

0x3- NVL -100

See also GetHeadJobPosInMm, GetHeadActualPosInBits

GetHeadJobPosInMm (42) Command

Purpose Get the Galvo workspace position in millimeter unit

Implementation "GetHeadJobPosInMm" or "42”

Parameters N/A

Returns "X;Y;Z” – in floating point mm workspace units, e.g. “45.234;34.7758;0”

See also GetHeadStatus , GetHeadActualPosInBits

GetHeadActualPosInBits (43) Command

Purpose Get the Galvo position in hardware bits

Implementation "GetHeadActualPosInBits" or "43”

Parameters N/A

Returns "X;Y;Z” – in integer bits units, e.g. “2451189;-7557;45112”.

Remote Control API

1040-0012 Revision Q 265

GetHeadActualPosInBits (43) Command

See also GetHeadStatus, GetHeadJobPosInMm

7.3.2 JOB EXECUTION CONTROL

ClearJobList (200) Command

Purpose Clears the list of loaded jobs.

Implementation "ClearJobList" or "200"

Parameters None

Returns "0" – Command acknowledge

Comments Before jobs can be executed locally, they must be loaded from Flash
memory into the SMC working memory. To change the list of loaded jobs,
the list must be cleared first using this command.

Jobs are loaded into the SMC Flash file system through the use of the
saveJobData method.

See also saveJobData

GetFlashJobFileList (203) Command

Purpose Returns a comma-separated list of job files located on the SMC Flash drive.

Implementation "GetFlashJobFileList" or "203"

Parameters None

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded into the SMC Flash file system through the use of the
saveJobData method.

See also saveJobData, and LoadFlashJob

Remote Control API

1040-0012 Revision Q 266

GetUSBJobFileList (204) Command

(Not yet supported)

Purpose Returns a comma separated list of job files located on the USB Flash drive
on the SMC.

Implementation "GetUSBJobFileList" or "204"

Parameters None

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded onto a USB Flash file system through the use of the
saveJobData method.

See also saveJobData

LoadFlashJob (205) Command

Purpose Loads a job from the SMC Flash drive.

Implementation "LoadFlashJob,<job-name>" or "205,<job-name>"

Parameters <job-name> – The name of a job stored on the SMC

Returns "0" – Command acknowledge

Comments • Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• The job name must include the extension as part of the name (e.g.
"Circle.wlb").

See also GetFlashJobFileList

LoadUSBJob (206) Command

(Not yet supported)

Purpose Loads a job from the USB Flash drive on the SMC.

Implementation "LoadUSBJob,<job-name>" or "206,<job-name>"

Parameters <job-name> – The name of a job stored on the USB Flash file system
device

Remote Control API

1040-0012 Revision Q 267

LoadUSBJob (206) Command

(Not yet supported)

Returns "0" – Command acknowledge

Comments • The host must have exclusive control of the SMC (TakeHostControl)
before issuing this command.

• The job name must include the extension as part of the name (e.g.
"Circle.wlb").

See also GetUSBJobFileList

ExecuteJobOnce (207) Command

(Partially supported)

Purpose Starts the one-time execution of a job.

Implementation "ExecuteJobOnce, <job-name>" or "207, <job-name>"

Parameters <job-name> – One of the jobs loaded with LoadFlashJob or LoadUSBJob.

Note: Job-name is not currently supported. All of the loaded jobs are
executed in the order they were loaded regardless if job-name is present
or empty.

Returns "0" – Command acknowledge

Comments • Before this command is executed, the host must have done the
following:

o Taken control of the SMC using the TakeHostControl
command

o Loaded a locally stored job with the LoadFlashJob
command or the LoadUSBJob command

• Unless the job was constructed with a WaitForIO instruction, it will
begin to execute immediately.

• The job can be stopped at any time by issuing an Abort command.

• This command returns as soon as the job is dispatched.

See also TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

Remote Control API

1040-0012 Revision Q 268

ExecuteJobContinuous (208) Command

(Partially supported)

Purpose Starts the execution of a job and repeats it forever.

Implementation "ExecuteJobContinuous, <job-name>" or "208, <job-name>"

Parameters <job-name> – One of the jobs loaded with LoadFlashJob or LoadUSBJob

Note: Job-name is not currently supported. All of the loaded jobs are
executed in the order they were loaded regardless if job-name is present
or empty.

Returns "0" – Command acknowledge

Comments • Before this command is executed, the host must have done the
following:

o Taken control of the SMC using the TakeHostControl
command

o Loaded a locally stored job with the LoadFlashJob
command or the LoadUSBJob command

• The will begin to execute immediately.

• If job execution is required to be synchronous with an external input
such as STRTMRK, then it should have been constructed with a
WaitForIO instruction after the BeginJob instruction.

• At the completion of the job, the job will loop until an Abort
command is received.

• This command returns as soon as the job is dispatched.

See also TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

GetJobStatus (209) Command

Purpose Returns the status of the currently executing job

Implementation "GetJobStatus" or "209"

Parameters None

Returns "Idle" – No job is executing; a job may or may not be loaded.

"Busy" – A job is executing.

See also N/A

Remote Control API

1040-0012 Revision Q 269

GetJobState (211) Command

Purpose (Reserved for future use) Returns the state of the currently executing job

Implementation "GetJobState" or "211"

Parameters None

Returns <current-sequence-index> – The index number of the currently executing
sequence

<current-sequence-count> – Number of iterations of the current
executing sequence

<current-segment-index> – The index number of the currently executing
segment

<current-segment-count> – Number of iterations of the currently
executing segment

<current-segment-name> – The name of the currently executing segment

Ex: “1,2,3,1,Preamble”

See also N/A

GetJobElapsedTime (212) Command

Purpose Returns the last measured duration (in milliseconds) of the currently
executing job.

Implementation "GetJobElapsedTime" or "212"

Parameters None

Returns <time-in-msec> – Last measured job execution duration in milliseconds

Comments Time is measured based in the monitoring of the BeginJob and EndJob
events. Jobs must be constructed with these instructions to be measured.

See also N/A

Remote Control API

1040-0012 Revision Q 270

StartScanScript (213) Command

Purpose Indicates that a script body is to follow

Implementation "StartScanScript" or "213"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only availbale in enhanced command mode, and paired
with EndScanScript command.

Any text between StartScanScript and EndScanScript without a command
prefix is considered as script body. Consult ScanMaster Designer (SMD)
ScanScript help document for script syntax. A short example that makes 2
circles:

$1001: StartScanScript

Image.Circle(0, 0, 1)

Image.Circle(-1, 0, 2)

$1002:EndScanScript

See also EndScanScript, and RunScanScript

EndScanScript (214) Command

Purpose Close the script body that started with StartScanScript command.

Implementation " EndScanScript " or "214"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only available in enhanced command mode, and paired
with StartScanscript command.

Any text between StartScanScript and EndScanScript without a command
prefix is consider as script body. Consult ScanMaster Designer (SMD)
ScanScript help document for script syntax. A short example that makes 2
circles:

$1001: StartScanScript

Image.Circle(0, 0, 1)

Remote Control API

1040-0012 Revision Q 271

EndScanScript (214) Command

Image.Circle(-1, 0, 2)

$1002:EndScanScript

See also StartScanScript, and RunScanScript

RunScanScript (215) Command

Purpose Run the script that loaded with StartScanScript and end EndScanScript
command.

Implementation " RunScanScript " or "215"

Parameters None

Returns "0" – Command acknowledge

Comments This command is only availbale in enhanced command mode.

See also StartScanScript, and EndScanScript

GetJobFileList (217) Command

Purpose Returns a comma separated list of job files located on the tmp folder on
the SMC.

Implementation "GetJobFileList", <job-location> or "217, <job-location>"

Parameters <job-location> – where to get the job list

1 = from SMC flash drive

2 = from SMC USB drive

3 = from SMC tmp folder

Returns <job-list> – A comma-separated list of job names

Comments Jobs are loaded onto a USB Flash file system through the use of the
saveJobData method.

tmp folder is volatile. All the files in tmp folder will be lost after power
cycle.

Remote Control API

1040-0012 Revision Q 272

GetJobFileList (217) Command

See also saveJobData

EnableLogging (219) Command

Purpose Sends raw commands received by SMC marking engine to host computer
for logging purpose. Used for debugging the program flow.

Implementation "EnableLogging" or "219"

Parameters None

Returns "0" – Command acknowledgment

Comments Please contact Cambridge Technology technical support for additional
information on how to use this command.

See also N/A

7.3.3 SYSTEM ADMINISTRATION COMMANDS

SetAdminPIN (500) Command

Purpose (Obsolete) Sets the Administrator PIN (password).

Implementation "SetAdminPIN,<admin-pin>" or "500,<admin-pin>"

Parameters
<admin-pin> New administrator PIN as a numeric string

Value range 000000 - 999999

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• The Administrator PIN is used with the Pendant interface to protect
access to administrator functions.

See also GetUserPIN, SetUserPIN

Remote Control API

1040-0012 Revision Q 273

GetAdminPIN (501) Command

Purpose (Obsolete) Gets the current Administrator PIN (password)

Implementation "GetAdminPIN" or "501"

Parameters None

Returns <admin-pin> – Administrator PIN as a numeric string

Comments
The Administrator PIN is used with the Pendant interface to protect access
to administrator functions

See also SetAdminPIN, GetUserPIN, SetUserPIN

SetDHCPMode (502) Command

Purpose Sets the DHCP addressing mode

Implementation "SetDHCPMode,<mode>" or "502,<mode>"

Parameters <mode> – "Static" or "Autodetect"

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• Static IP addressing parameters are set using the SetLocalIP,
SetLocalGateway, and SetSubnetMask commands. The board
must be reset before these settings take effect.

• Automatic IP addressing mode causes the SMC to request an IP
address from a DHCP server when it boots up. If no server
responds within a time-out period, the SMC automatically assigns
itself an IP address in the range 169.254.xxx.yyy with a net-mask
value of 255.255.0.0.

See also SetLocalIP, SetLocalGateway, SetSubnetMask

Remote Control API

1040-0012 Revision Q 274

GetDHCPMode (503) Command

Purpose Gets the current DHCP addressing mode

Implementation "GetDHCPMode" or "503"

Parameters None

Returns
"Static" – Means that Static IP addressing is used

"Autodetect" – Means that Automatic DHCP-based addressing is used

Comments

• Static IP addressing is set using the SetLocalIP, SetLocalGateway,
SetSubnetMask and SetDHCPMode command. The board must be
reset before these settings take effect.

• Automatic IP addressing mode causes the SMC to request an IP
address from a DHCP server when it boots up. If no server
responds within a time-out period, the SMC automatically assigns
itself an IP address in the range 169.254.xxx.yyy with a net-mask
value of 255.255.0.0.

See also SetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

SetLocalGateway (504) Command

Purpose
Sets the gateway IP address used by the SMC if the SMC is in static IP
addressing mode.

Implementation "SetLocalGateway,<gateway-address>" or "504,<gateway-address>"

Parameters Gateway Address in dot notation (e.g., 192.168.101.2)

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to give
the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the SetLocalIP and
SetSubnetMask commands. The board must be reset before these
settings take effect.

See also GetLocalGateway, SetLocalIP, SetSubnetMask, SetDHCPMode

Remote Control API

1040-0012 Revision Q 275

GetLocalGateway (505) Command

Purpose
Returns the gateway IP address used by the SMC if the SMC is in static IP
addressing mode.

Implementation "GetLocalGateway" or "505"

Parameters None

Returns Gateway Address in dot notation (e.g., 192.168.101.2)

See also SetLocalGateway

SetLocalIP (506) Command

Purpose
Sets the IP address used by the SMC if the SMC is in static IP addressing
mode.

Implementation "SetLocalIP,<IP-address>" or "506,<IP-address>"

Parameters IP Address in dot notation (e.g., 192.168.101.200)

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to give
the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the
SetLocalGateway and SetSubnetMask commands. The board must
be reset before these settings take effect.

See also GetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

GetLocalIP (507) Command

Purpose
Returns the IP address used by the SMC if the SMC is in static IP addressing
mode.

Implementation "GetLocalIP" or "507"

Parameters None

Returns Static IP Address in dot notation (e.g., 192.168.101.2)

Remote Control API

1040-0012 Revision Q 276

GetLocalIP (507) Command

See also SetLocalIP

SetNodeFriendlyName (508) Command

Purpose Sets the "friendly name" of the SMC.

Implementation "SetNodeFriendlyName,<friendly-name>" or "508,<friendly-name>"

Parameters
<friendly-name> – String representing the friendly name assigned to the
SMC

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to give
the host exclusive control of the SMC.)

• The "friendly name" of the SMC corresponds to the tag FriendlyName
in the Administration Configuration file.

See also GetNodeFriendlyName

GetNodeFriendlyName (509) Command

Purpose Returns the "friendly name" of the SMC.

Implementation "GetNodeFriendlyName" or "509"

Parameters None

Returns Friendly name – String representing the friendly name assigned to the SMC

Comments
The "friendly name" of the SMC corresponds to the tag FriendlyName in the
Administration Configuration file.

See also SetNodeFriendlyName

Remote Control API

1040-0012 Revision Q 277

SetSubnetMask (510) Command

Purpose
Sets the subnet mask used by the SMC if the SMC is in static IP addressing
mode.

Implementation "SetSubnetMask,<mask>" or "510,<mask>"

Parameters <mask> – Subnet mask in dot notation (e.g., 255.255.255.0)

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to give
the host exclusive control of the SMC.)

• Other static IP addressing parameters are set using the
SetLocalGateway and SetLocalIP commands. The board must be
reset before these settings take effect.

See also GetSubnetMask, SetLocalGateway, SetLocalIP, SetDHCPMode

GetSubnetMask (511) Command

Purpose
Returns the subnet mask used by the SMC if the SMC is in static IP
addressing mode.

Implementation "GetSubnetMask" or "511"

Parameters None

Returns Subnet mask in dot notation (e.g., 255.255.255.0)

See also SetSubnetMask

SetUserPIN (512) Command

Purpose (Obsolete) Sets the Administrator PIN (password)

Implementation "SetUserPIN,<user-pin>" or "512,<user-pin>"

Parameters <user-pin> – New user PIN as a numeric string

Remote Control API

1040-0012 Revision Q 278

SetUserPIN (512) Command

Returns "0" – Command acknowledge

Comments

• Before this command can be executed, the host must have exclusive
control of the SMC. (The TakeHostControl command is used to
give the host exclusive control of the SMC.)

• The User PIN is used with the Pendant interface to protect access to
SMC functions.

See also GetAdminPIN, SetAdminPIN

GetUserPIN (513) Command

Purpose (Obsolete) Gets the current User PIN (password)

Implementation "GetUserPIN" or "513"

Parameters None

Returns <user-pin> (User PIN as a numeric string)

Comments
The User PIN is used with the Pendant interface to protect unauthorized
access to SMC functions.

See also SetUserPIN, GetAdminPIN, SetAdminPIN

SetCOMPortSpeed (514) Command

Purpose
Sets the speed of the pendant, API, and motion-control COM ports on the
SMC.

Implementation

"SetCOMPortSpeed,<pendant-port-baud-rate>,<api-port-baud-
rate>,<motion-control-port-baud-rate>"

 or

"514,<pendant-port-baud-rate>,<api-port-baud-rate>,<motion-control-
port-baud-rate>"

Parameters
<pendant-port-baud-rate> The speed of the pendant COM port on

the SMC

Remote Control API

1040-0012 Revision Q 279

SetCOMPortSpeed (514) Command

Value range 110, 300, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 128000,
and 256000

<api-port-baud-rate> The speed of the API COM port on the
SMC

Value range 110, 300, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 128000,
and 256000

<motion-control-port-baud-
rate>

The speed of the motion-control COM
port on the SMC

Value range 110, 300, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200,1 28000,
and 256000

Returns "0" – Command acknowledge

Comments
The three COM ports on the SMC are logically identified as “pendant”,
“api”, and “motion-control” and are physically mapped using the
command SetCOMPortAssignments.

See also GetCOMPortSpeed, SetCOMPortAssignments, GetCOMPortAssignments

GetCOMPortSpeed (515) Command

Purpose
Gets the current speed of the pendant, API, and motion-control COM
ports on the SMC.

Implementation "GetCOMPortSpeed" or "515"

Parameters None

Returns

<pendant-port-baud-rate>,<api-port-baud-rate>,<motion-control-port-
baud-rate>

Note: The possible values of <pendant-port-baud-rate>, <api-port-baud-
rate>, and <motion-control-port-baud-rate> are the following: 110, 300,
1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 128000, and
256000.

Remote Control API

1040-0012 Revision Q 280

GetCOMPortSpeed (515) Command

Comments
Each returned value can be any one of the following: 110, 300, 1200, 2400,
4800, 9600, 19200, 38400, 57600, 115200, 128000, and 256000

See also SetCOMPortSpeed, SetCOMPortAssignments, GetCOMPortAssignments

SetCOMPortAssignments (516) Command

Purpose
Maps the SMC COM ports to the logical pendant, api and motion-control
ports

Implementation

"SetCOMPortAssignments,<pendant-port>,<api-port>,<motion-control-
port>" or

"516,<pendant-port>,<api-port>,<motion-control-port>"

Parameters

<pendant-port> – 0 or 1 Reserved for future use

<api-port> – 0 or 1

<motion-control-port> – 1 or 4

Returns "0" – Command acknowledge

Comments

• The COM port assignments must be unique.

• If hardware flow control is required, then COM1 (1) should be used.

• This command updates the contents of the Administration
Configuration file.

See also SetCOMPortSpeed, GetCOMPortSpeed, GetCOMPortAssignments

GetCOMPortAssignments (517) Command

Purpose
Gets the current mapping of the SMC COM ports to the logical pendant,
api and motion-control ports

Implementation "GetCOMPortAssignments>" or "517"

Parameters None

Returns "<pendant-port>,<api-port>,<motion-control-port>" (1, 2, or 3)

See also SetCOMPortSpeed, GetCOMPortSpeed, SetCOMPortAssignments

Remote Control API

1040-0012 Revision Q 281

7.4 REMOTE CONTROL RETURN CODES

In certain cases, the response message may be an error message rather than the expected “0” (ACK)

or return variable(s). Table 38 - Remote Control Return Codes in page 319 describes the codes that

may be returned.

Appendix A - Theory of Operation

1040-0012 Revision Q 282

8 APPENDIX A - THEORY OF OPERATION

8.1 SCANNING JOB FUNDAMENTALS

The purpose of scanning jobs is to direct the motion of laser galvanometers while simultaneously

modulating a laser beam. The laser is turned on when a pattern is to be drawn, and it is turned off

when moving to the beginning of a new pattern location. In laser marker systems, the drawing action

is commonly referred to as a “Mark”, and a move to new pattern location is called a “Jump”. These

terms will be used in this appendix even though an SMC could be used for laser projection where a

more appropriate term for “Mark” might be “display”.

8.1.1 COORDINATE SYSTEM CONVENTIONS

The movement commands “MarkAbs” and “JumpAbs” are expressed in Cartesian coordinates as

shown in the following figure.

(-2
23

, 0)

(0, 2
23

-1)

(2
23

-1, 0)

(0, -2
23

)

(0, 0)
X

Y

Figure 20 - SCANNING SYSTEM COORDINATE CONVENTIONS

Appendix A - Theory of Operation

1040-0012 Revision Q 283

The SMC is inherently a 24-bit address controller. Some commands however are backwards

compatible to the 16-bit EC1000. If the API is operating in “bits” mode (see the Units command)

then the arguments of the commands JumpAbs and MarkAbs are assumed to be 16-bit integers with

a range of -32768 to +32767 and are converted to 24-bit values by padding them with 8 bits of zeros

in the least significant bit positions.

If the motion commands JumpAbsEx and MarkAbsEx are used, the API must be guided how to make

the conversion the 24-bits. This is because these commands can pass up to 32-bits of global

coordinate data which could represent values in a 16-bit, 20-bit, or 24-bit scanner address space

depending on the origins of the job data and what the design assumptions were. By using the

command ActuatorUnits..the API can correctly convert the command values to 24-bit form. By

default, 16-bit data is assumed.

8.1.2 MARKS AND JUMPS

Laser marking is specified by a list of XML data that defines “Jumps” to locations and “Marks” to the

end points of a vector or series of “connected” vectors otherwise known as poly-vectors. Other XML

data represent commands to specify related actions and pauses required to ensure the desired

marking quality. The terms Mark, Jump, and related delays are defined in Table 27 - Laser Marking

Terms and Definitions on the following page.

Figure 21 - LASER MARKING SAMPLE

The above figure shows a sample of the beginning of a simple laser marking. The image is composed

of straight line segments (vectors). Connected line segments are formed with sequential Mark

commands and spaces between unconnected segments are formed with Jump commands. Both

Marks and Jumps are controlled-velocity coordinated X and Y galvo motions. The speeds are

controllable within a job.

Appendix A - Theory of Operation

1040-0012 Revision Q 284

8.1.3 LASER MARKING TERMS AND DEFINITIONS

The following table contains definitions of laser marking terms.

Table 27 - LASER MARKING TERMS AND DEFINITIONS

Term Purpose

Jump A jump causes a (typically) rapid movement of the scanner mirrors to a new
position. Ideally, no marking occurs during a jump. The laser is typically turned
off during a jump.

If a jump is followed by a mark, the jump command defines the starting point (X
and Y coordinates) of the laser marking; the SMC directs the laser to the end of
the “jump” position where marking will begin.

Jump Speed The jump speed determines the speed of the jump. The laser is off during a
jump, and the jump speed is set high enough to maximize throughput but low
enough to minimize instability in the galvo motion as the galvo slows down in its
approach to the next marking location.

Mark A mark command begins the marking process. The laser typically turns on at the
beginning of the mark command and continues at a set speed to its pre-defined
location at the end point of the command. As show in the above figure,
subsequent mark commands can create a sequence of marks. The laser is turned
off at the end of the last mark command in a series of commands.

Mark Speed The Mark Speed sets the speed during marking. The speed is set to a value that
allows the laser to form the proper width and depth of a mark in the target
media. This value is dependent on the laser power and target material.

Delays Delays are used to ensure that the marking is complete with no skips, no over-
burns, and no inadvertent marks. Delay commands are necessary to
compensate for system inertia, acceleration, deceleration, and requested jump
and marking speeds.

In addition to the dynamic signals used to control the galvanometers and lasers, the SMC provides

supplemental digital inputs and outputs for external equipment synchronization, and two analog

outputs for laser power adjustment. These signals can be manipulated at any point in a job, but are

less tightly controlled in time than the galvanometer and laser control signals.

The default initial galvanometer position after system power-up is in the center of the image field

unless otherwise specified in the ControlConfig file by the InitPosition tag. Marks and jumps are

Appendix A - Theory of Operation

1040-0012 Revision Q 285

specified from the current position of the galvanometers to a new target position. Jobs typically

begin with an absolute jump to the first marking position, and after that, each vector (jump or mark)

starts at the new current position, which is usually the end point of the preceding vector.

8.1.4 MICRO-VECTORING

Controlled velocity marking and jumping is accomplished through a process call micro-vectoring.

This process is illustrated in the following figure. The marking engine of the SMC takes a vector and

divides it into multiple shorter segments that are applied to the galvos at regularly spaced time

intervals. This interval is known as the update interval. The galvo speed is controlled by the

magnitude of the change in the output command at each update period.

The figure shows the sequence of typical output commands for the X-axis. The commands for the Y-

axis and Z-axis are similar and are strictly locked in time with the X-axis, differing only in magnitude

of the discrete steps. As the X-axis reaches successive targets X1,X2, etc., so do the Y- and Z-axis reach

their corresponding targets, Y1, Z1,Y2, Z2, etc.

Figure 22 - MICRO-VECTOR OPERATION

8.1.5 DELAYS

Because laser scanning systems are electro-mechanical in nature, various delays must be employed

to compensate for inertial effects of the mirror and motor structure. These inertial effects generally

result in a positional lag of the deflection mirrors relative to the electrical command to make them

move. These delays are used to properly time laser on/off and modulation signals relative to the

Appendix A - Theory of Operation

1040-0012 Revision Q 286

mirror positions. In addition to compensating for lag times, the delays can be used to compensate

for transient instability in mirror positions after a step to a new location. The following figures

illustrate these effects.

Each system configuration requires fine-tuning of delay commands to ensure full and complete

marking with no overburns. The individual delay settings are dependant on the dynamic response of

the galvo/mirror combination in use, and the sensitivity characteristics of the marking medium.

Determining these delays is typically a process of trial and error. The delays are specified as part of

the job definition described in the following pages.

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

JumpDelay During a jump, the
system mirrors
accelerate to rapidly get
to the next mark
position—ideally at the
fastest possible speed—
to minimize overall
marking time. As with
all accelerations, mirror
and system inertia
create a slight lag at the
beginning of the
acceleration. Likewise,
the system will require
a certain delay (settling
time) at the end of the
jump as it decelerates
to precisely the correct
speed required for
accurate marking.

Acceleration and
deceleration times and
settling times will vary
from system to
system—due to the
weight of mirrors, the
type of galvanometer,
etc.—and will also vary

Appendix A - Theory of Operation

1040-0012 Revision Q 287

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

depending on the jump
speed and the length of
the jump.

A too-short Jump Delay
will cause marking to
start before mirrors are
properly settled,
resulting in inadvertent
marking.

A too-long Jump Delay
will have no visible
effect, but marking is
delayed so overall job
production time
(marking time)
increases.

MarkDelay A mark delay at the end
of marking a line
segment allows the
mirrors to move to the
required position prior
to executing the next
mark command.

A too-short Mark Delay
will allow the
subsequent jump
command to begin
before the system
mirrors get to their final
marking position. The
end of the current mark
will turn upwards
towards the direction of
the jump vector, as
shown to the right.

A too-long Mark delay
will cause no visible

Appendix A - Theory of Operation

1040-0012 Revision Q 288

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

marking errors but will
add to the overall
processing time.

LaserOnDela
y

The Laser On Delay can
be used to prevent
burn-in effects at the
start of a vector. This
delay is typically used to
turn on the laser after
the first few microsteps
of a mark command,
ensuring that the laser's
motion control systems
(mirrors, etc.) are “up to
speed” before marking.
The vectors must be
scanned with a constant
velocity to ensure
uniform marking.

This delay can have
either a positive or
negative value and will
vary with different
marking media (some
media require a burn-in
time to begin marking).
The goal is to adjust the
Laser On Delay to
ensure uniform marking
with no variations of
intensity throughout the
desired vector.

Typically, too short of a
delay will cause burn-in
effects, and too long of
a delay may cause

Appendix A - Theory of Operation

1040-0012 Revision Q 289

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

disconnected line
segments.

PolyDelay A polygon delay is a
delay that is
automatically inserted
between two marking
segments. The
minimum delay allows
enough time for the
galvos and mirror to
“catch-up” with the
command signal before
a new command is
issued to move on to
the next point.

If variable polygon delay
mode is selected, then
the delay is variable and
changes as a function
how large an angular
change is required to
move on to the next
point. The larger the
angular change, the
longer it takes for the
galvos to change
direction and accelerate
to the required speed in
the new direction. The
delay is scaled
proportionally to the
size of the angle.

Appendix A - Theory of Operation

1040-0012 Revision Q 290

Table 28 - DELAY PARAMETERS

Parameter Purpose Effects

LaserOffDela
y

The Laser Off Delay can
be used to prevent
burn-in effects at the
end of a vector. This
delay is typically used to
turn off the laser just
after the last few micro-
steps of a mark
command, ensuring that
the marking stops
exactly where it is
supposed to.

The goal is to adjust the
Laser Off Delay to
ensure uniform marking
with no variations of
intensity throughout the
desired vector.

Typically, too short of a
delay will cause line
segments that are
prematurely
treminated, and too
long of a delay will
cause burn-in at the end
of line segments.

Appendix A - Theory of Operation

1040-0012 Revision Q 291

The relationship of the delays to the micro-vectoring process is illustrated in the following figure.

Figure 23 - MICRO-VECTORING AND LASER TIMING RELATIONSHIPS

8.2 IMAGE FIELD CORRECTION

Image field correction capability is provided to compensate for optical errors induced by all two-

mirror laser beam systems. These optical distortions are caused by a number of factors, including the

distance between each mirror, the distance between the mirrors and the image field, and the type of

lens used in the laser for focusing the laser beam.

The following figure shows the basic projection system layout.

Appendix A - Theory of Operation

1040-0012 Revision Q 292

Figure 24 - PROJECTION SYSTEM LAYOUT

8.2.1 X-Y MIRROR INDUCED DISTORTION

Projection of a laser beam via an X-Y mirror set controlled by galvanometers induces distortion in the

X-axis proportional to the tangent of the angle of the Y-axis mirror and the distance from the focal

plane to the center of the Y-axis mirror. This distortion is also known as “pincushion” distortion.

Beam direction

Θx

Θy

Appendix A - Theory of Operation

1040-0012 Revision Q 293

Figure 25 - PINCUSHION DISTORTION CAUSED BY AN X-Y MIRROR SET

8.2.2 F-THETA OBJECTIVE INDUCED DISTORTION

The addition of an F-theta objective in the laser field provides direct proportionality between the scan

angle and the distance in the image field. The addition of an F-theta objective in the laser field also

ensures that the focus lies on a flat surface. F-theta objective lenses, like all optical lenses, are not

perfect and induce their own projection field distortions. This distortion, illustrated in the following

figure, is called “pillow” distortion for what it does to a square image. In reality, this distortion is

radially symetric from the image field origin and can often be modeled as a third order polynomial.

Many projection lens vendors will provide these model coefficients, or measurement data from which

these coefficients can be derived. For many applications, however, this distortion is negligible.

Figure 26 - PILLOW DISTORTION CAUSED BY F-THETA LENS

Appendix A - Theory of Operation

1040-0012 Revision Q 294

8.2.3 COMPOSITE DISTORTION AND CORRECTION METHODOLOGY

The two distortion components described above combine to create a distorted image field similar to

that shown in the following figure. The SMC automatically compensates for this distortion by the use

of correction tables.

Figure 27 - COMPOSITE IMAGE FIELD DISTORTION

Correction tables represent a 65x65 element grid covering the full addressable projection range of the

system. Each grid element contains three correction components: one each for the X, Y and Z axes. The

components represent an offset that, if added to an ideal position command for that point, would alter

the galvo positions such that the resulting projected point would fall onto a “perfect” grid (i.e., the

point would be “corrected”).

During the micro-vectoring process at each update interval, the SMC calculates the ideal position of

the mirrors along the path. It compares this value to the correction table grid and accesses the four

grid points that immediately surround the calculated point. The corrections at these four points are

proportionally averaged depending on how close the ideal point is to each grid point. This process,

called bi-linear interpolation, produces a correction that is applied to the ideal point, and the result is

then sent to the system D/A converters and serial digital command outputs.

8.2.4 MULTIPLE CORRECTION TABLE SUPPORT

The SMC has integral support for up to four independent three-axis correction tables. These tables

are organized in pairs where the first pair is applied to the Auxiliary XY2-100 port and GSBus axes 0,

1, 2, and the second pair is applied to the primary XY2-100 port and GSBus axes 3, 4, 5. The job

Appendix A - Theory of Operation

1040-0012 Revision Q 295

parameter ActiveCorrectionTable dynamically selects which table of each pair that is actually used.

The first of the two tables in the pair is intended to be used when actual laser processing is taking

place. The second table of the pair is intended to be used with a pointer laser.

Table contents can be automatically loaded on board power-up from stored correction table files, or

they can be dynamically loaded via the sendStreamData method of the session API.

ActiveCorrectionTable

Selection (1 or 2)

Micro-vector

generation
Vector data

Time-domain

micro-vector data

Correction

Table 1

Correction

Table 2

Correction

Table 3

Correction

Table 4

Correction

table

application

Correction

table

application

1

2

1

2

AUX XY2-100 Port 2:

X, Y, Z

GSBus Channels 0-2

X, Y, Z

XY2-100 Port 1:

X, Y, Z

GSBus Channels 3-5

X, Y, Z

Figure 28 - MULTIPLE CORRECTION TABLE USAGE IN THE SMC

8.3 LASER TIMING CONTROL

The SMC provides very flexible laser control capability that is synchronized with galvo motion control.

Six dedicated TTL-compatible signals (whose timing relationships are defined by the diagram below)

are provided at all times. Not all signals may be required for a given customer laser configuration.

An integrator need only select an appropriate subset of these signals, and configure them via

software with appropriate timing parameters. Provisions are made for the synchronous control of

two separate lasers running with two independent pulse-widths during the laser-on period. Laser

control timing is specified in terms of laser timing “ticks” which can be set via software to an interval

as small as 20ns to as large as 1.3ms with a resolution of 20ns. The typical tick value is set to 1µsec.

Appendix A - Theory of Operation

1040-0012 Revision Q 296

½ standby

period

Laser on delay

(+/-), + shown

Laser off delay

½ output

period

LASER_MOD1

LASER_MOD2

LASER_GATE

LASER_MOD3

Laser FPK position

(+/-), - shown

Laser FPK length

Micro-vector start

Laser modulation delay

Laser enable

timeout

Pulse may be

truncated

LASER_ENABLE

Laser enable delay

Servo Position Cmd

Micro-vectoring in

process

Laser Stand-by time Laser On time

Figure 29 - LASER TIMING RELATIONSHIPS

Notes:

1. LaserEnableDelay, LaserEnableTimeout, and LaserModDelay must be >=0.

2. Laser Enable delay is relative to the leading edge of LASER_GATE, but the leading edge of

LASER_ENABLE will never occur after any of the following:

• Micro-vector start

• The leading edge of LASER_GATE

• The leading edge of LASER_MOD3 (FPK usage)

3. Laser On delay may be positive or negative and is relative to Micro-vector start.

4. LASER_MOD3 (FPK) position may be positive or negative and is relative to the leading edge of

LASER_GATE.

5. Laser pulse generation starts relative to, but no earlier than, the leading edge of LASER_GATE or

the leading edge of LASER_MOD3.

Appendix A - Theory of Operation

1040-0012 Revision Q 297

6. Standby pulse suppression is accomplished by setting the standby pulse width to zero.

7. The first laser-on laser pulse on LASER_MOD1 & 2 is always a full pulse.

8. The signal LASER_POINTER is also provided with multiple programmable functions to support

pointer laser operation.

Figure 29 - Laser Timing Relationships on page 296 introduces 12 timing parameters that can be set to

yield signal relationships that are suitable for controlling all known commercial lasers used in marking

or projection scanning systems. The reference point for the timing is the beginning of micro-vectoring

and is shown on the diagram as Micro-vector start.

When the marking engine processor encounters a mark instruction, it asserts the LASER_ENABLE signal

and waits for the specified Laser Enable delay. The LASER_ENABLE signal is normally used to

precondition fiber laser systems in anticipation of being called into action during a marking operation.

LASER_ENABLE will remain asserted until the Laser Enable timeout period expires after marking has

stopped, i.e. after the last vector of a sequence of marking vectors. If a new series of marking vectors

begins before the Laser Enable timeout expires, LASER_ENABLE remains asserted and a new timeout

period is armed.

When the Laser Enable delay expires, one of three things will happen based on the setting of the delay

parameters:

1. Micro-vectoring begins if Laser On Delay and Laser First Pulse Killer (FPK) position are both positive.

2. LASER_GATE is asserted if Laser On Delay is negative and Laser FPK position is positive.

3. LASER_MOD3 is asserted if Laser FPK delay is negative and Laser On delay is also negative OR if

Laser FPK delay is negative and the absolute value of Laser FPK delay is larger than Laser On delay

if Laser On delay is positive.

As can be seen from Figure 29 - Laser Timing Relationships on page 296, the timing of laser emission is

directly related to the timing of the LASER_GATE signal. Pulse emission will never occur earlier than

the leading edge of LASER_GATE or LASER_MOD3, but it may be delayed after the leading edge of

LASER_GATE by setting the Laser Modulation delay to a non-zero value. The LASER_MOD3 signal may

be asserted any time before or after the leading edge of LASER_GATE. The signals LASER MOD3 and

LASER_MODn are dependently related to the timing of LASER_GATE. That is, if Laser On delay is

changed, the system timing is changed to keep all three signals in the proper timing relationship.

The LASER_MOD1 and LASER_MOD2 signals are time-related in that the periods of the signals must be

the same for the standby (laser not active) and output active (laser emitting) intervals. The phase of

the two signals is programmable and is typically set to be 180 degrees apart from each other to ensure

that the two lasers never fire at the same instant of time, thus reducing peak power demands and

Appendix A - Theory of Operation

1040-0012 Revision Q 298

reducing EMI effects. Otherwise, the pulse widths during the standby and output active intervals are

independent and programmable for each signal.

4. The lasers are turned off automatically after the micro-vectoring completes and the Laser Off

delay expires. The LASER_GATE signal is de-asserted and the LASER_MOD1/2 signals switch to

the standby mode

8.4 SOFTWARE CONTROL OF LASER TIMING

The laser timing configuration is statically specified in an XML based configuration file stored on the

SMC and is automatically applied at system boot-up. The configuration can be changed by reading it

through the software Application Programming Interface (API), altering it, and then sending it back to

the controller. Changes made this way would be applied every time the SMC re-initializes. The

configuration information can also be specified dynamically in a job stream and applied on a

temporary basis being persistent only until the next re-initialization. These concepts are described

more fully in Table 36 - Example IPG Fiber Laser Configuration XML on page 315.

All of the programmable control elements of the SMC are manipulated through XML language

constructs passed through the API. At system boot-up, XML configuration files are read from Flash

memory on the controller and some of the parameters are applied to the hardware to pre-configure

it. The Laser Configuration fixed-data contains definitions to specify laser marking and idle-time

pulse-widths and frequency, signal polarities, FPK signal timing, etc. These parameters do not often

change during a marking job, although provisions are made in the Job Stream XML specification to do

so if required. Other laser timing parameters such an Laser On Delay and Laser Off Delay are

expected to change as the job is tuned for best performance. These parameters are directly

controlled by JobStream XML constructs, but not in the Laser Configuration XML specification.

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserTiming>50</LaserTiming>

Dynamic Configuration XML Example: <set id='LaserTiming'>50</set>

Example Description: Set the laser time base to 1µsec:

50 * 20ns = 1µsec “tick”

Appendix A - Theory of Operation

1040-0012 Revision Q 299

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserPipelineDelay>0</LaserPipelineDelay>

Dynamic Configuration XML Example: <set id='LaserPipelineDelay'>0</set>

Example Description: Normally zero except when using Cambridge Technology DC900,
DC2000, or DC3000 digital servos. This value is used the delay all of the
laser timing signals as a group relative to the galvo commands. The
maximum pipleine delay value is equivalent to 4000 laser ticks so the
specified value maximum will be reduces depending on the
LaserTiming value. For example, if LaserTiming is 50 (1usec resolution)
then the maximum value will be 4000usec. If LaserTiming is set to 5
(0.1usec resolution), then the maximum piline value is 400usec.

Static Configuration XML Example: <'LaserPowerDelay'>1700</'LaserPowerDelay'>

Dynamic Configuration XML Example: <set id='LaserPowerDelay'>1700</set>

Example Description: The job will delay for 1.7msec every time the laser power is changed.

Static Configuration XML Examples: <LaserModeConfig>0x0</LaserModeConfig>

Dynamic Configuration XML Example: <set id='LaserModeConfig'>0x0</set>

Example Description: LaserModeConfig uses a bit-mask to represent the various signal
polarities.

Static Configuration XML Example: <LaserEnableDelay>7</LaserEnableDelay>

Dynamic Configuration XML Example: <set id='LaserEnableDelay'>7</set>

Example Description: Wait 7msec after asserting the LASERENABLE signal.

Static Configuration XML Example: <LaserEnableTimeout>50</LaserEnableTimeout>

Dynamic Configuration XML Example: <set id='LaserEnableTimeout'>50</set>

Example Description: Deassert LASSERENABLE if there is no laser activity requested within
50msec of when the laser turned off.

Static Configuration XML Example: <LaserModDelay>20</LaserModDelay>

Dynamic Configuration XML Example: <set id='LaserModDelay'>20</set>

Example Description: Delay the modulation of the laser for 20 laser timing ticks after
LASER_GATE is asserted.

Appendix A - Theory of Operation

1040-0012 Revision Q 300

Table 29 - LASER CONFIGURATION CONTROL XML EXAMPLES

Static Configuration XML Example: <LaserFPK position='-30' width='10'/>

Dynamic Configuration XML Example: <set id='LaserFPK'>-30; 10</set>

Example Description: Assert LASER_MOD3 30 laser timing ticks in advance of the leading
edge of LASER_GATE. Deassert LASER_MOD3 10 laser timing ticks after
it was asserted.

Static Configuration XML Examples: <LaserStandby laser='1' width='5' period='200'/>

 <LaserStandby laser='2' width='5' period='200'/>

Dynamic Configuration XML Example: <set id='LaserStandby'>1; 5; 200</set>

 <set id='LaserStandby'>2; 5; 200</set>

Example Description: For Lasers 1 & 2, set the stand-by (idle) pulse width to 5 laser timing
ticks and set the period to 200 ticks. This is a pulse frequency of 5KHz
provided that LaserTiming is set to 50.

Dynamic Configuration XML Example: <set id='LaserOnDelay'>150</set>

Example Description: LASER_GATE is asserted 150 laser timing ticks after the start of micro-
vectoring.

Dynamic Configuration XML Example: <set id='LaserOffDelay'>100</set>

Example Description: LASER_GATE is deasserted 100 laser timing ticks after the micro-
vectoring has completed.

Dynamic Configuration XML Example: <set id='LaserPulse'>1; 8; 15</set>

Example Description: For Laser 1, set the “Laser On” pulse width to 8 laser timing ticks and
set the period to 15 ticks. This is a pulse frequency of 66.7KHz
provided that LaserTiming is set to 50.

Dynamic Configuration XML Example: <set id='LaserPulse'>2; 10; 5</set>

Example Description: Laser 2 period always follows Laser 1. For Laser 2, set “Laser On” pulse
width 10 ticks and the phase shift to 5 ticks. This is a pulse frequency
of 66.7KHz provided that LaserTiming is set to 50.

Appendix A - Theory of Operation

1040-0012 Revision Q 301

8.4.1 LASER TIMING EMULATION

Traditional laser scanning controllers often use fixed signal sets and constrained timing relationships

to provide laser control, whereas the SMC uses a completely flexible and programmable suite of

signals. The SMC can be configured to emulate the timing produced by other commercial controllers

because of the flexible nature of the laser timing generator.

Typical laser configurations are shown in the following diagrams. These configurations emulate the

laser control performed by the RAYLASE AG SP-ICE card, and SCANLAB RTC3/4/5 and SCANalone

series of scan head controllers. These configurations are by no means the only ones possible, and

new laser systems are frequently introduced. Most notably, fiber lasers have become much more

reliable and affordable, offering compact packaging and highly efficient energy properties. The SMC

has been specifically designed to accommodate the unique timing requirements of these lasers.

Along with each diagram are static and dynamic XML examples for configuring the laser. Only those

parameters that are meaningful for the illustration are specified in the examples. Other

parameters—such as those used to set signal polarities, Laser Enable Delay/Timeout, Standby (Tickle)

timing, Laser Power Delay and Laser Pipeline Delay—are almost always set to pre-defined values.

Laser Pulse timing, although potentially variable during a job, does not affect the fundamental signal

relationships that define the laser emulation modes. In addition, the specification of a laser timing

“tick” is most conveniently set to a 1µsec interval, which is assumed in the examples.

Appendix A - Theory of Operation

1040-0012 Revision Q 302

CO2 Laser Timing

½ standby
period

Laser 1 standby pulse width

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Microvector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay == 0

Laser FPK length == 0

Micor-vector start

Laser modulation delay

== Laser on delay

Laser enable

timeout

Pulse may be
truncated

Standby pulse period
Laser ouput

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in
process

(Used for timing
reference only)

Figure 30 - LASER TIMING FOR CO2 LASER SYSTEMS

The simplest emulation mode is for CO2 lasers. These lasers do not require a Laser FPK signal so

these parameters are set to zero. LASER_ENABLE is also not typically needed, therefore the Laser

Enable delay and Laser Enable timeout can be set to zero to maximize throughput. In fact, whenever

LASER_ENABLE is not required, the Laser Enable delay should be set to zero.

Appendix A - Theory of Operation

1040-0012 Revision Q 303

Table 30 - EXAMPLE CO2 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</LaserE
nableDelay >

<set id='LaserEnableDelay'>0</set> Maximizes throughput

<LaserEnableTimeout>0</Las
erEnableTimeout >

<set
id='LaserEnableTimeout'>0</set>

Maximizes throughput

<LaserModDelay>0</LaserM
odDelay>

<set id='LaserModDelay'>0</set>
No modulation delay
required

<LaserFPK>0, 0</LaserFPK> <set id='LaserFPK '>0, 0</set> No FPK required

<LaserStandby>1; 5;
200</LaserStandby>

<set id='LaserStandby'>1; 5;
200</set>

Laser 1 stand-by; pulse
width = 5 laser timing ticks
(5µsec); pulse period = 200
ticks (200µsec) = 5KHz

<LaserStandby>2; 10;
200</LaserStandby>

<set id='LaserStandby'>2; 10;
200</set>

Laser 2; pulse width = 10
laser timing ticks (10µsec);
pulse period = 200 ticks
(200µsec) = 5KHz, must be
same as Laser 1

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =
150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =
100µsec

N/A <set id='LaserPulse'>1; 8; 15</set>

Laser 1 operating; pulse
width = 8 laser timing ticks
(8µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

N/A <set id='LaserPulse'>2; 10; 15</set>

Laser 2 operating; pulse
width = 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz,
must be same as Laser 1

Appendix A - Theory of Operation

1040-0012 Revision Q 304

Nd:YAG Emulation Mode-1 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay

== Laser on delay

Laser enable

timeout

Pulse may be
truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in
process

Figure 31 - ND:YAG EMULATION MODE-1 (RAYLASE ND:YAG MODE-1 AND SCANLAB YAG 1)

Most of theYAG modes do not require standby or idle pulses. To suppress these pulses, the Standby

pulse width and pulse period are set to zero. In this mode, the LASER_MOD3 is asserted coincident

with the LASER_GATE and LASER_MOD1 signals, but its assertion can have variable length. If the

Laser On delay is modified, the timing of LASER_MOD3 and LASER_MOD1 track with it.

Appendix A - Theory of Operation

1040-0012 Revision Q 305

Table 31 - EXAMPLE ND:YAG MODE-1 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Laser
EnableDelay >

<set
id='LaserEnableDelay'>0</set>

Maximizes throughput

<LaserEnableTimeout>0</La
serEnableTimeout >

<set
id='LaserEnableTimeout'>0</set>

Maximizes throughput

<LaserModDelay>0</LaserM
odDelay>

<set id='LaserModDelay'>0</set> No modulation delay required

<LaserFPK>0, 15</LaserFPK> <set id='LaserFPK '>0, 15</set>
Example FPK length set to
15usec with no shift

<LaserStandby>1; 0;
0</LaserStandby>

<set id='LaserStandby'>1; 0;
0</set>

1 = laser; no tickle pulses
required

<LaserStandby>2; 0;
0</LaserStandby>

<set id='LaserStandby'>2; 0;
0</set>

2 = laser; no tickle pulses
required

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =
150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =
100µsec

N/A
<set id='LaserPulse'>1; 8;
15</set>

Laser 1 operating; pulse width
= 8 laser timing ticks (8µsec);
pulse period = 15 ticks (15µsec
) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;
15</set>

Laser 2 operating; pulse width
= 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision Q 306

Nd:YAG Emulation Mode-2 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay ==

Laser modulation delay -

Laser on delay

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay ==0

Laser FPK length == 10us

Micro-vector start

Laser modulation delay

== Desired FPS

Laser enable

timeout

Pulse may be
truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in
process

Desired FPS

Figure 32 - ND:YAG EMULATION MODE-2 (RAYLASE ND:YAG MODE-2)

In this mode, the LASER_MOD3 signal is a 10µ sec pulse asserted a variable amount of time prior to

the assertion of LASER_GATE and the coincident generation of pulses. This timing is typically suited

for Lee and Coherent lasers.

Appendix A - Theory of Operation

1040-0012 Revision Q 307

Table 32 - EXAMPLE ND:YAG EMULATION MODE-2 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Laser
EnableDelay >

<set
id='LaserEnableDelay'>0</set>

Maximizes throughput

<LaserEnableTimeout>0</La
serEnableTimeout >

<set
id='LaserEnableTimeout'>0</set>

Maximizes throughput

<LaserModDelay>0</LaserM
odDelay>

<set id='LaserModDelay'>0</set> No modulation delay required

<LaserFPK>-20,
10</LaserFPK>

<set id='LaserFPK '>-20, 10</set>
Example FPK length set to
10µsec with a minus 20µsec
shift relative to LASER_GATE

<LaserStandby>1; 0;
0</LaserStandby>

<set id='LaserStandby'>1; 0;
0</set>

1 = laser; no tickle pulses
required

<LaserStandby>2; 0;
0</LaserStandby>

<set id='LaserStandby'>2; 0;
0</set>

2 = laser; no tickle pulses
required

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =
150µsec

N/A
<set
id='LaserOffDelay'>100</set>

100 laser timing ticks =
100µsec

N/A
<set id='LaserPulse'>1; 8;
15</set>

Laser 1 operating; pulse width
= 8 laser timing ticks (8µsec);
pulse period = 15 ticks (15µsec
) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;
15</set>

Laser 2 operating; pulse width
= 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision Q 308

Nd:YAG Emulation Mode-3 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay ==

Laser modulation delay -

Laser on delay

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay ==0

Laser FPK length == 10us

Micro-vector start

Laser modulation delay

== Desired FPS

Laser enable

timeout

Pulse may be
truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in
process

Desired FPS

Figure 33 - ND:YAG EMULATION MODE-3 (RAYLASE ND:YAG MODE-3)

This mode is very similar to Mode-2. The difference is that Laser FPK length can vary. Spectron lasers

normally use this type of timing.

Table 33 - EXAMPLE ND:YAG MODE-3 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase
rEnableDelay >

<set
id='LaserEnableDelay'>0</set>

Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision Q 309

Table 33 - EXAMPLE ND:YAG MODE-3 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L
aserEnableTimeout >

<set
id='LaserEnableTimeout'>0</set>

Maximizes throughput

<LaserModDelay>0</Laser
ModDelay>

<set id='LaserModDelay'>0</set>
No modulation delay
required

<LaserFPK>-20,
18</LaserFPK>

<set id='LaserFPK '>-20, 18</set>

Example FPK length set to
18µsec with a minus 20µsec
shift relative to
LASER_GATE

<LaserStandby>1; 0;
0</LaserStandby>

<set id='LaserStandby'>1; 0;
0</set>

1 = laser; no tickle pulses
required

<LaserStandby>2; 0;
0</LaserStandby>

<set id='LaserStandby'>2; 0;
0</set>

2 = laser; no tickle pulses
required

N/A
<set
id='LaserOnDelay'>150</set>

150 laser timing ticks =
150µsec

N/A
<set
id='LaserOffDelay'>100</set>

100 laser timing ticks =
100µsec

N/A
<set id='LaserPulse'>1; 8;
15</set>

Laser 1 operating; pulse
width = 8 laser timing ticks
(8µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;
15</set>

Laser 2 operating; pulse
width = 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision Q 310

Nd:YAG Emulation Mode-4 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay ==

Laser FPK delay +

Laser FPK length

Laser enable

timeout

Pulse may be
truncatedLaser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in
process

Figure 34 - ND:YAG EMULATION MODE-4 (SCANLAB YAG 2)

In this mode, the LASE_MOD3 signal leading edge is coincident with the leading edge of LASER_GATE,

and the generation of the laser pulses is delayed to be coincident with the trailing edge of the

LASER_MOD3 signal.

Table 34 - EXAMPLE ND:YAG MODE-4 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase
rEnableDelay >

<set
id='LaserEnableDelay'>0</set>

Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision Q 311

Table 34 - EXAMPLE ND:YAG MODE-4 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L
aserEnableTimeout >

<set
id='LaserEnableTimeout'>0</set
>

Maximizes throughput

<LaserModDelay>15</Laser
ModDelay>

<set
id='LaserModDelay'>15</set>

Laser modulation delayed by
the same value as the
LASER_MOD3 length

<LaserFPK>0,
15</LaserFPK>

<set id='LaserFPK '>0, 15</set>
Example FPK length set to
15µsec with no shift relative
to LASER_GATE

<LaserStandby>1; 0;
0</LaserStandby>

<set id='LaserStandby'>1; 0;
0</set>

1 = laser; no tickle pulses
required

<LaserStandby>2; 0;
0</LaserStandby>

<set id='LaserStandby'>2; 0;
0</set>

2 = laser; no tickle pulses
required

N/A
<set
id='LaserOnDelay'>150</set>

150 laser timing ticks =
150µsec

N/A
<set
id='LaserOffDelay'>100</set>

100 laser timing ticks =
100µsec

N/A
<set id='LaserPulse'>1; 8;
15</set>

Laser 1 operating; pulse width
= 8 laser timing ticks (8µsec);
pulse period = 15 ticks
(15µsec) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;
15</set>

Laser 2 operating; pulse width
= 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz,
must be same as Laser 1

Appendix A - Theory of Operation

1040-0012 Revision Q 312

Nd:YAG Emulation Mode-5 Timing

Laser 1 standby pulse width == 0

Laser on delay Laser off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

Micro-vector delay == 0

MARKACTIVE *

Start of mark

LASER_MOD3

Laser FPK delay

== Laser on delay

Laser FPK length

Micro-vector start

Laser modulation delay ==

Laser FPK delay + 10us

Laser enable

timeout

Pulse may be
truncated

Laser output

pulse period

LASER_ENABLE

Laser enable delay

Laser 2 standby pulse width == 0

Servo Position Cmd

Micro-vectoring in
process

10us

Figure 35 - ND:YAG EMULATION MODE-5 (SCANLAB YAG 3)

This mode is very similar to emulation mode-4. The difference is that the start of laser pulse

generation is 10µ sec after the coincident leading edges of LASER_GATE and LASER_MOD3.

Table 35 - EXAMPLE ND:YAG MODE-5 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>0</Lase
rEnableDelay >

<set
id='LaserEnableDelay'>0</set>

Maximizes throughput

Appendix A - Theory of Operation

1040-0012 Revision Q 313

Table 35 - EXAMPLE ND:YAG MODE-5 LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableTimeout>0</L
aserEnableTimeout >

<set
id='LaserEnableTimeout'>0</set>

Maximizes throughput

<LaserModDelay>10</Laser
ModDelay>

<set
id='LaserModDelay'>10</set>

Laser modulation delayed by
10µsec relative to
LASER_GATE

<LaserFPK>0,
20</LaserFPK>

<set id='LaserFPK '>0, 20</set>
Example FPK length set to
20µsec with no shift relative
to LASER_GATE

<LaserStandby>1; 0;
0</LaserStandby>

<set id='LaserStandby'>1; 0;
0</set>

1 = laser; no tickle pulses
required

<LaserStandby>2; 0;
0</LaserStandby>

<set id='LaserStandby'>2; 0;
0</set>

2 = laser; no tickle pulses
required

N/A
<set
id='LaserOnDelay'>150</set>

150 laser timing ticks =
150µsec

N/A
<set
id='LaserOffDelay'>100</set>

100 laser timing ticks =
100µsec

N/A
<set id='LaserPulse'>1; 8;
15</set>

Laser 1 operating; pulse width
= 8 laser timing ticks (8µsec);
pulse period = 15 ticks (15µsec
) = 66.7KHz

N/A
<set id='LaserPulse'>2; 10;
15</set>

Laser 2 operating; pulse width
= 10 laser timing ticks
(10µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

Appendix A - Theory of Operation

1040-0012 Revision Q 314

Fiber Laser Timing

½ standby
period

Laser 1 standby

pulse width

Laser On delay

(+/-), + shown

Laser Off delay

½ output
period

Laser 1 pulse
width

Laser 2 pulse
width

LASER_MOD1

LASER_MOD2

LASER_GATE

LASER_MOD3

Laser FPK position = 0

Laser FPK length = 0

Micro-vector start

Laser Modulation delay = 0

Laser Enable

timeout

Standby pulse period Laser output

pulse period

LASER_ENABLE

Laser Enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in
process

Figure 36 - FIBER LASER TIMING

Pulsed fiber lasers have recently become very popular because of a reduced cost of ownership

relative to more traditional YAG lasers. The IPG YLP series of lasers introduces a new control signal

requirement that is met with the LASER_ENABLE signal of the SMC. The MO (Master Oscillator)

signal defined in the IPG “B” interface specification is intended to be driven by the LASER_ENABLE

signal of the SMC. This signal is used to prepare the fiber laser to generate output pulses and must be

asserted at least 7ms before pulses are required. In addition, this signal should be deasserted after

laser emission in order to save power and extend the life of the laser. Deassertion, however, should

not be done too quickly in order to avoid the overhead of restarting the laser. Deassertion is usually

done after all marking is done in a job. In the case of the SMC, a timeout is provided to automatically

deassert the LASER_ENABLE signal after a period of inactivity.

Appendix A - Theory of Operation

1040-0012 Revision Q 315

In the above diagram notice that the LASER_MOD3 signal is made inactive (i.e., it is not required by

the interface.) The pulse width of the standby and active periods is set to 50% of the pulse period

(square wave) since laser emission is triggered on the leading edge of the pulse. Pulse width does

not determine the level of power emitted; only the pulse frequency (or period) determines average

power. In practice, the pulse-width-to-period ratio can be in a range of 0.1 to 0.9.

 CAUTION

The IPG laser Type A interface specifies that the pulse period must not be longer than a minimum

value. The SMC does not protect against incorrect programming; the application must prevent

incorrect values from being used.

Table 36 - EXAMPLE IPG FIBER LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

<LaserEnableDelay>8</LaserE
nableDelay >

<set id='LaserEnableDelay'>8</set>
Minimum master oscillator
startup time

<LaserEnableTimeout>50</La
serEnableTimeout >

<set
id='LaserEnableTimeout'>50</set>

Shut down laser master
oscilator if no laser activity
for 10msec

<LaserModDelay>0</LaserMo
dDelay>

<set id='LaserModDelay'>0</set>
No modulation delay
required

<LaserFPK>0, 0</LaserFPK> <set id='LaserFPK '>0, 0</set> No FPK required

<LaserStandby>1; 25;
50</LaserStandby>

<set id='LaserStandby'>1; 25;
50</set>

Laser 1 stand-by; pulse
width = 25 laser timing
ticks (25µsec); pulse period
= 50 ticks (50µsec) =
20.0KHz

<LaserStandby>2; 25;
50</LaserStandby>

<set id='LaserStandby'>1; 25;
50</set>

Laser 2; Settings the same
as Laser 1

N/A <set id='LaserOnDelay'>150</set>
150 laser timing ticks =
150µsec

N/A <set id='LaserOffDelay'>100</set>
100 laser timing ticks =
100µsec

Appendix A - Theory of Operation

1040-0012 Revision Q 316

Table 36 - EXAMPLE IPG FIBER LASER CONFIGURATION XML

Static Configuration XML Dynamic Configuration XML Example Description

N/A <set id='LaserPulse'>1; 8; 15</set>

Laser 1 operating; pulse
width = 8 laser timing ticks
(8µsec); pulse period = 15
ticks (15µsec) = 66.7KHz

N/A <set id='LaserPulse'>2; 10; 15</set>

Laser 2 operating; pulse
width = 10 laser timing
ticks (10µsec); pulse period
= 15 ticks (15µsec) =
66.7KHz

Appendix B - Error Codes

1040-0012 Revision Q 317

9 APPENDIX B - ERROR CODES

9.1 XML API ERROR CODES

Table 37 - API ERROR CODES

Error Name Code Description

Success 0 Operation successful

Error_AccessDenied 1 TCP/IP networking access was denied

Error_Communications 2 TCP/IP network communications error ocurred

Error_NotConnected 3 Client is not connected to the server

Error_IllegalClientId 4 Internal error

Error_InvalidPersistState 5 Internal error

Error_ServerNameNotFound 8 Requested server name is not valid

Error_InvalidParameter 9 Bad parameter to a method call

Error_Network 10 TCP/IP networking error

Error_DataNotFound 11 Requested data file not found

Error_PathNotFound 12 Specified path does not exist

Error_Access 13 Access to server file system was denied

Error_LocalAccess 14 Access to the client file system was denied or
Server is under control of a local pendant

Appendix B - Error Codes

1040-0012 Revision Q 318

Table 37 - API ERROR CODES

Error Name Code Description

Error_DataUnknown 15 XML data type is unknown

Error_EventHandling 16 Internal event processing error

Error_NotAvailable 17 Server is not currently available

Error_CancelByUser 18 Server is aborting by user

Error_Aborting 19 Server is currently aborting

Error_LicenseUnavailable 21 License is not found

Error_LicenseAccessDenied 22 License is not granted

Error_Exception 23 Internal error

Error_Timeout 24 Requested action timed out

Error_NoData 25 The requested fixed data was empty

Error_DataExists 26 Destination file already exists and over-write
not specified

Error_RemoteAccess 28 Server is already connected to a client

Error_StateError 29 Server is in an error state and unavailable

Error_NotFound 30 Server is not found

Error_Buffer_Full 31 Streaming data transmit buffer is full

Error_RemoteAPIUnavailable 32 Remote API is in use by another client

Error_RemoteAPITimeout 33 Timed out connecting to the remote API

Error_SocketException 34 Network socket error detected

Appendix B - Error Codes

1040-0012 Revision Q 319

Table 37 - API ERROR CODES

Error Name Code Description

Error_CommandSyntax 37 Command syntax error

Error_XMLJobSyntax 38 XML job syntax error

Error_Busy 39 System is busy in running a job

Error_LoginInProgress 99 Error during Login

9.2 REMOTE CONTROL ERROR CODES

Table 38 - REMOTE CONTROL RETURN CODES

Code Meaning Description

0 Success Command processed with no error.

100 No Files Found There were no job files in the device or folder.

101 No Drive No USB disk drive was found.

105 JobException Job causes exception during execution.

106 Not In Host Control The command required that exclusive control of the SMC first be
obtained by executing the TakeHostControl command.

108 Error Job Busy The command cannot execute because a job is running.

110 Error Software An internal software exception occurred.

111 Load Fail Cannot load the job.

112 No Objects Required objecta not exist.

Appendix B - Error Codes

1040-0012 Revision Q 320

Table 38 - REMOTE CONTROL RETURN CODES

Code Meaning Description

114 Job Files Format The file type (file extention) is not a valid job.

121 File Not Found The named job file was not found.

122 Idle No job is running.

123 Busy A job is running.

124 No Job No job is loaded to run.

125 In Control The Remote Control is in control as the host.

126 Not In Control The Remote Control is not as the host.

127 Bad Command The command was not recognized.

128 Bad Arg The command passed inappropriately formed arguments (or no
argument if an argument was required).

129 Arg Out of Range The command passed argument was not in allowed range.

131 Abort Detected Job is aborting or aborted.

132 Arg Count Not
Matched

Wrong number of command arguments was passed.

202 Abort Job was Aborted.

207 Cannot Open Port Cannot open the serial port.

208 Port Not Open The serial port was not opened before the requested command.

209 Port Timeout The serial port timed out waiting for input.

210 Wrong Port
Number

An invalid COM port ID was specified.

Appendix B - Error Codes

1040-0012 Revision Q 321

9.3 LastError Code Descriptions

Table 39 - LASTERROR CODE DESCRIPTIONS

Value Description

0 No errors have been detected

300 SMC Linux Memory Map Failed

301 Insuffucient Buffer

302 SMC Not Ready

303 SMC No Free Buffer Segment

304 Error Abort

305 Error Pause

306 SMC Fpga Driver Not Initialized

310 License Serial Number Mismatch

311 License File Corrupted

312 License File Missing

313 License Tiling File Missing

314 License Tray File Missing

315 License Dll Automation File Missing

316 License Database File Missing

317 License Surface Marking File Missing

318 License Engraving File Missing

Appendix B - Error Codes

1040-0012 Revision Q 322

Value Description

319 SMC Error in Syncmaster License

320 SMC Netlink Failed

321 SMC Netlink Send Message Failed

350 SMC Mailbox Size Exceeded

351 SMC Invalid Data Package

352 SMC System In Error State

353 SMC Using Backup Configuration

400 SMC Abort Detected

401 SMC No Buffer Available

500 SMC Stage Buffer Not Available

501 SMC Stage Not Initialized

502 SMC Stage Sync Update Fail

503 SMC Stage Not Enabled Configuration

504 SMC Stage Serial Communication Failed

505 SMC Stage Data Copy Error

506 SMC Stage Memory Creation Failed

507 SMC Stage Connection Timeout

508 SMC Stage Homing Failed

509 SMC Stage Tracking Not Enabled

510 SMC Stage Invalid Reply

706 Job Sequence Not Found

Appendix B - Error Codes

1040-0012 Revision Q 323

Value Description

713 Xml Load Error

1001 Bad correction table data in file

1002 Inappropriate scale factor in correction table file

1003 General parsing error of correction table file

1100 Unidentified exception was caught

1101 Correction table memory allocation failed

1102 Error reading the Admin config file

1103 Error reading the Control config file

1104 Error reading the Laser config file

1105 Error reading the Lens config file

1106 Error reading the User config file

1107 Error reading the Performance config file

1108 Error reading the Servo config file

1109 Error reading the Vector Parameters config file

1110 Error reading the Sync Master config file

1120 Default config files being used because of a prior error
detected

1200 Selected config file was not found

1201 Overwrite config file with backup

1300 Invalid XML node detected while parsing

1301 Invalid XML value detected while parsing

1310 Error parsing the Control config file

Appendix B - Error Codes

1040-0012 Revision Q 324

Value Description

1311 Error parsing the Laser config file

1312 Error parsing the Lens config file

1313 Error parsing the User config file

1314 Error parsing the X axis data in the Servo config file

1315 Error parsing the Y axis data in the Servo config file

1316 Error parsing the Z axis data in the Servo config file

1317 Error parsing the ScanPack vector params

1318 Error parsing the ScanPack spiral params

1319 Error parsing the ScanPack circle params

1320 Error parsing the ScanPack point params

1321 Error parsing the ScanPack laser params

Index

1040-0012 Revision Q 325

10 INDEX

.

.NET API format, 13

.NET C#, 15
1

1 command. See Abort command
10 command. See GetKFactor command
14 command. See SetPerformanceGlobals

command
15 command. See ResetPerformanceGlobals

command
16 command. See OpenCOMPort command
17 command. See CloseCOMPort command
18 command. See COMWriteLine command
2

2 command. See TakeHostControl command
200 command. See ClearJobList command
203 command. See GetFlashJobFileList

command
204 command. See GetUSBJobFileList

command, See GetUSBJobFileList command,
See GetUSBJobFileList command

205 command. See LoadFlashJob command
206 command. See LoadUSBJob command
207 command. See ExecuteJobOnce command
208 command. See ExecuteJobContinuous

command
209 command. See GetJobStatus command
21 command. See MotfCalFactor command
211 command. See GetJobState command
212 command. See GetJobElapsedTime

command, See GetJobElapsedTime
command, See GetJobElapsedTime
command, See GetJobElapsedTime
command

27 command. See GetZKFactor command
28 command. See GetYKFactor command
29 command. See GetControllerTemp

command, See GetControllerTemp
command, See GetControllerTemp
command, See GetControllerTemp
command

3

3 command. See ReleaseHostControl
command

35 command. See GetDigitalPort command
4

4 command. See GetHostControlStatus
command

5

5 command. See GetHostInControl command
500 command. See SetAdminPIN command
501 command. See GetAdminPIN command
502 command. See SetDHCPMode command
503 command. See GetDHCPMode command
504 command. See SetLocalGateway

command
505 command. See GetLocalGateway

command
506 command. See SetLocalIP command
507 command. See GetLocalIP command
508 command. See SetNodeFriendlyName

command
509 command. See GetNodeFriendlyName

command
510 command. See SetSubnetMask command
511 command. See GetSubnetMask command
512 command. See SetUserPIN command
513 command. See GetUserPIN command

Index

1040-0012 Revision Q 326

514 command. See SetCOMPortSpeed
command

515 command. See GetCOMPortSpeed
command

516 command. See SetCOMPortAssignments
command

517 command. See GetCOMPortAssignments
command

6

6 command. See EnableBroadcasting
command

7

7 command. See LoadHardwareDefaults
command

8

8 command. See HardwareReset command
9

9 command. See GetRemoteIP command
A

Abort command, 247
ActiveCorrectionTable parameter, 139
ActuatorMin XML Tag, 77
ActuatorUnits XML Tag, 72
Address XML Tag, 46
Admin XML Tag, 49
AliveChannel XML Tag, 45
An XML Tag, 75
Aperture XML Tag, 66
API formats, 13
APIPort XML Tag, 47
APIPortSpeed XML Tag, 47
ApplicationEvent command, 135
ArcAbs command, 106
AVer XML Tag, 28
AxisDACConfig parameter, 145
B

BeginJob command, 135
Bits XML Tag, 58
BreakOK XML Tag, 47

BroadcastChannel XML Tag, 46
C

CalFlag XML Tag, 66
CalibrateRectangularField XML Tag, 71
ClearJobList command, 261
Client XML Tag, 47
CloseCOMPort command, 255
CmdRangeCheckMode parameter, 92
CmdRangeCheckMode XML Tag, 52
CO2 Laser Timing. See Laser Timing Control
COMWriteLine command, 256
Configuration XML Tag, 70, 72
ConnectIP XML Tag, 30
ConnectJob XML Tag, 30
ContrlTemp XML Tag, 33
ControlFile XML Tag, 44
Coordinate System Conventions, 278
Correction Table Support, 290
CorrFile1 XML Tag, 51
CorrFile2 XML Tag, 51
CorrFile3 XML Tag, 51
CorrFile4 XML Tag, 51
CurrentDIO XML Tag, 34
D

Data XML Tag, 28, 30, 32, 34, 44, 50, 57, 66,
69, 80, 81, 82, 83, 84, 85, 86

DataChannel XML Tag, 44
DebugPort XML Tag, 48
DebugPortSpeed XML Tag, 48
Delays, 281
DeleteAllSegments command, 201
DeleteSegment command, 201
Description XML Tag, 70
DesignErrorComponents XML Tag, 72, 73
DFMPort XML Tag, 48
DFMPortSpeed XML Tag, 48
DigitalIOPolarity XML Tag, 56
DisableSegment command, 202
Distortion

Composite Image Field Distortion, 290
Pillow Distortion, 289
Pincushion Distortion, 289

Index

1040-0012 Revision Q 327

X-Y Mirror Induced Distortion, 288
DistortionFactor XML Tag, 73
Duty XML Tag, 59
Dx XML Tag, 76
Dy XML Tag, 76
Dz XML Tag, 76
E

e1e2Coeffs XML Tag, 75
E1E2Spacing XML Tag, 74
EnableBroadcasting command, 249
EnableParkPosition command, 107
EnableSegment command, 202
EnableStreamToFile XML Tag, 44
EndJob command, 136
EventChannel XML Tag, 45
ExecuteJobContinuous command, 264
ExecuteJobOnce command, 263
ExtPauseControl XML Tag, 55
ExtPwrCtrl XML Tag, 58
F

Fiber Laser Timing. See Laser Timing Control
FieldOffset parameter, 140
FieldOrientation parameter, 140
FixedFreq XML Tag, 58
FixedPW XML Tag, 58
FixedWatts XML Tag, 58
FocalLen XML Tag, 66
FPGAFirmVer XML Tag, 28
FreePermStorage XML Tag, 29
FreeTempStorage XML Tag, 29
FreeUSBStorage XML Tag, 29
Freq XML Tag, 59
FriendlyName XML Tag, 30, 46
G

GalvoCmdDelayComp command, 115
GalvoCmdMarker command, 136
GetAdminPIN command, 269
GetCOMPortAssignments command, 277
GetCOMPortSpeed command, 275
GetControllerTemp command, 258
GetDHCPMode command, 270

GetErrorCodeDescription method, 243
GetFlashJobFileList command, 261
GetHostControlStatus command, 248
GetHostInControl command, 249
GetJobElapsedTime command, 265, 266, 267
GetJobState command, 265
GetJobStatus command, 264
GetKFactor command, 251
GetLocalGateway command, 271
GetLocalIP command, 272
GetNodeFriendlyName command, 272
getPriorityData method, 240
GetRemoteIP command, 251
GetSubnetMask command, 273
GetUSBJobFileList command, 261, 267, 268
GetUserPIN command, 274
GetYKFactor command, 257
GetZKFactor command, 257
H

HardwareReset command, 250
Head Transform parameter, 144
HeadParameters XML Tag, 73, 75
HeadSerialNumber XML Tag, 46
HeadType XML Tag, 70
HSN XML Tag, 30
I

InitPosition XML Tag, 55
InsGenMode XML Tag, 54
Installation location, 14
Interlock XML Tag, 33, 59
IntlockConfig XML Tag, 53
IP XML Tag, 29
IPAddress XML Tag, 49
IPGateway XML Tag, 49
IPMode XML Tag, 49
IPRetries XML Tag, 49
IPSubnet XML Tag, 49
IPTimeout XML Tag, 49
IPTryagain XML Tag, 49
ISRGenMode XML Tag, 55

Index

1040-0012 Revision Q 328

J

Job parameters, 89
JobDataCntr command, 136
JobDataCntr XML Tag, 34
JobMarker command, 137
JobMarker XML Tag, 34
JobTimer command, 138
JumpAbs command, 107
JumpAbsEx command, 108
JumpAbsList command, 110
JumpAndFireList command, 113, 116
JumpDelay parameter, 92
JumpRelEx command, 112
JumpSpeed parameter, 93
JumpStepTime parameter, 94
L

Laser Marking Terms and Definitions, 280
Laser Timing Control, 291

CO2 Laser Timing, 298
Fiber Laser Timing, 310
Laser Timing Emulation, 297
Nd05C3:YAG Emulation Mode-3 Timing, 304
Nd05C3YAG Emulation Mode-1 Timing, 300
Nd05C3YAG Emulation Mode-2 Timing, 302
Nd05C3YAG Emulation Mode-4 Timing, 306
Nd05C3YAG Emulation Mode-5 Timing, 308

Laser Timing Emulation. See Laser Timing
Control

LaserEnable command, 130
LaserEnableDelay parameter, 123, 145
LaserEnableDelay XML Tag, 62
LaserEnableTimeout parameter, 124
LaserEnableTimeout XML Tag, 63
LaserFile XML Tag, 51
LaserFire command, 130
LaserFPK XML Tag, 63
LaserModDelay parameter, 124, 164
LaserModDelay XML Tag, 63
LaserModeConfig parameter, 146
LaserModeConfig XML Tag, 59
LaserModType parameter, 129
LaserOffDelay parameter, 125

LaserOn command, 130
LaserOnDelay parameter, 125
LaserPipelineDelay parameter, 126
LaserPipelineDelay XML Tag, 52
LaserPort XML Tag, 48
LaserPortSpeed XML Tag, 48
LaserPower XML Tag, 83, 85
LaserPowerDelay parameter, 127
LaserPowerDelay XML Tag, 63
LaserPulse parameter, 127
LaserRegulation command, 171
LaserScribe command, 171
LaserSignalOff command, 131
LaserSignalOn command, 131
LaserStandby parameter, 125
LaserStandby XML Tag, 63
LaserTiming parameter, 128
LastError Code Descriptions, 317
LastError XML Tag, 29
Layer XML Tag, 79, 80
Lens XML Tag, 72
LensFile XML Tag, 51
LensFocalLength-mm XML Tag, 74
LensMaxMechHalfAngle-deg XML Tag, 74
LensName XML Tag, 66
LissajousWobble params, 100
LoadFlashJob command, 262
LoadHardwareDefaults command, 250
LoadUSBJob command, 262
LocalMode XML Tag, 46
LoggingLevel XML Tag, 49
LongDelay command, 138
LsrName XML Tag, 57
LsrType XML Tag, 58
M

MAC XML Tag, 29
MarkAbs command, 118
MarkAbsEx command, 119
MarkAbsList command, 120
MarkDelay parameter, 94
MarkRel command, 121
MarkRelEx command, 122

Index

1040-0012 Revision Q 329

Marks and Jumps, 279
MarkSpeed parameter, 94, 95
MarkSpeed XML Tag, 84, 85
MarkStepTime parameter, 95
MicroStepMode XML Tag, 54
Micro-vectoring, 281
Mirrors XML Tag, 72
mmToActuatorSpaceTransform XML Tag, 75,

77
MotfCalFactor parameter, 165
MotfCalFactor XML Tag, 52
MotfCalGain XML Tag, 51
MotfCapable XML Tag, 51
MotfDelayComp parameter, 165
MotfDirection parameter, 166
MotfDirection XML Tag, 52
MotfEnable command, 169
MotfMode parameter, 166
MotfMode XML Tag, 52
MotfResetJump command, 170
MotfTriggerEvent parameter, 168
MotfTriggerEx parameter, 167
MotfWaitForTrigger command, 170
MotionPort XML Tag, 47
MotionPortSpeed XML Tag, 48
MSN XML Tag, 28
N

Nd05C3YAG Emulation Mode-1 Timing. See
Laser Timing Control

Nd05C3YAG Emulation Mode-2 Timing. See
Laser Timing Control

Nd05C3YAG Emulation Mode-3 Timing. See
Laser Timing Control

Nd05C3YAG Emulation Mode-4 Timing. See
Laser Timing Control

Nd05C3YAG Emulation Mode-5 Timing. See
Laser Timing Control

NetAssign XML Tag, 29
NetMask XML Tag, 29
O

ObjExtVer XML Tag, 28
Offset parameter, 141, 142

OnDataEvent method, 229
OnMessageEvent Message Types, 223
OpenCOMPort command, 254
P

Pendant XML Tag, 47
PendantPort XML Tag, 47
PendantPortSpeed XML Tag, 47
PerformanceFile XML Tag, 51
Period XML Tag, 83, 85
PermStoragePath XML Tag, 29
PincushionFactor XML Tag, 73
PixelMap command, 157, 163
PolyDelay parameter, 96
Port XML Tag, 30, 44, 45, 46
Predefined Application Message Event Codes,

224
PreserveCalFactors XML Tag, 71
PriorityChannel XML Tag, 45
Pulse XML Tag, 58
PulseWidth XML Tag, 83, 85
PVer XML Tag, 28
R

RasterLine command, 158
RasterMode command, 157, 163
RasterParams command, 157, 163
ReferenceInformation XML Tag, 69, 70
RefSurfaceToWorkSurfaceDist-mm XML Tag,

74
ReleaseHostControl command, 248
ResetPerformanceGlobals command, 253
Retransmit XML Tag, 46
Revision history, 6
Rotation XML Tag, 82
RTCCompatibility parameter, 143
RTCCompatibility XML Tag, 55
RunSegment command, 200
S

ScanScript embedded scripting language, 13
Segment command, 199
sendJobData method, 215
sendPriorityData method, 230

Index

1040-0012 Revision Q 330

sendStreamData method (overload 1), 189,
191, 193, 195, 196

Sequence command, 200
ServoConfig parameter, 149
Set command, 138
SetAdminPIN command, 268
SetCOMPortAssignments command, 276
SetCOMPortSpeed command, 275
SetDHCPMode command, 269
SetLocalGateway command, 270
SetLocalIP command, 271
SetMotfEncoderRate command, 257
SetNodeFriendlyName command, 272
SetSubnetMask command, 273
SettleCheckMode parameter, 185, 187
SetUserPIN command, 274
SMC Hardware Reference Manual, 5
SourceLensID XML Tag, 70
SourceScanHeadID XML Tag, 70
SourceSpacerID XML Tag, 70
StartupJob XML Tag, 55
StateCode XML Tag, 28
StreamFile XML Tag, 45
SupplementalLayers XML Tag, 79, 80
T

TableCreationDate XML Tag, 70
TableDataHasBeenCorrectedFromDesign XML

Tag, 71
TableParams XML Tag, 69, 78
TableRevision XML Tag, 70
TableStructure XML Tag, 77, 78
TakeHostControl command, 248
Tbl1Rotation XML Tag, 67
Tbl1XGain XML Tag, 67
Tbl1XOff XML Tag, 67
Tbl1YGain XML Tag, 67
Tbl1YOff XML Tag, 67
Tbl2Rotation XML Tag, 68
Tbl2XGain XML Tag, 68
Tbl2XOff XML Tag, 67
Tbl2YGain XML Tag, 68
Tbl2YOff XML Tag, 67

Tbl3Rotation XML Tag, 68
Tbl3XGain XML Tag, 68
Tbl3XOff XML Tag, 68
Tbl3YGain XML Tag, 68
Tbl3YOff XML Tag, 68
Tbl4Rotation XML Tag, 68
Tbl4XGain XML Tag, 68
Tbl4XOff XML Tag, 68
Tbl4YGain XML Tag, 68
Tbl4YOff XML Tag, 68
ThirdAxisPresent XML Tag, 71
Transform parameter, 142
TransformEnable parameter, 143
U

Units parameter, 90
UseExtPwrCtrl XML Tag, 58
User XML Tag, 48
UserFile XML Tag, 51
UserVar1 XML Tag, 81
UserVar2 XML Tag, 81
UserVar3 XML Tag, 81
UserVar4 XML Tag, 81
UserVar5 XML Tag, 81
UserVar6 XML Tag, 81
UsingFile command, 202
V

VariJumpDelay parameter, 96
VariPolyDelayFlag parameter, 96
VelocityComp command, 183
VisPtr XML Tag, 58
Volts XML Tag, 59
W

WaitForIO command, 132
Watts XML Tag, 59
WattsUnits XML Tag, 58
Win32 DLL API format, 13
Wobble mode, 98
Wobble parameter, 97
Wobble table, 99
WobbleEnable command, 101
WriteAnalog command, 133

Index

1040-0012 Revision Q 331

WriteDigital command, 133
X

XActPos XML Tag, 32
XActuatorStride XML Tag, 77
x-axis XML Tag, 78, 79
XGain XML Tag, 82
XGalvoMechHalfAngle-deg XML Tag, 73
XMirrorToObjectiveDist-mm XML Tag, 74
XML in the API, 20
XML Tags

Administration Configuration, 44
Broadcasted Status Information, 32
Broadcasted System Information, 28
Controller Configuration, 50
Correction Table, 69, 78, 81, 82
Laser Configuration, 57, 59
Lens Configuration, 66, 67
Performance Adjustments Table, 83, 85

X-NumCols XML Tag, 77
XOff XML Tag, 82
XOffset XML Tag, 84, 85
XPos XML Tag, 32
XPosAck XML Tag, 32
XPower XML Tag, 33
XStatus XML Tag, 33
XTemp XML Tag, 32
XtoYMirrorDist-mm XML Tag, 73
Xx XML Tag, 75
Xy XML Tag, 76
XY2AddressingMode XML Tag, 54
XY2AxisDisable parameter, 104, 105, 106
XY2ErrorCheckMode parameter, 101, 103
XY2FrameRate XML Tag, 54
XY2StatusTiming XML Tag, 54

XYCalFactor parameter, 90
Xz XML Tag, 76
Y

YActPos XML Tag, 32
YActuatorMin XML Tag, 77
YActuatorStride XML Tag, 77
y-axis XML Tag, 79, 80
YGain XML Tag, 82
YGalvoMechHalfAngle-deg XML Tag, 73
YMirrorToRefSurfaceDist-mm XML Tag, 73
Y-NumRows XML Tag, 77
YOff XML Tag, 82
YOffset XML Tag, 84, 85
YPos XML Tag, 32
YPosAck XML Tag, 32
YPower XML Tag, 33
YStatus XML Tag, 33
YTemp XML Tag, 33
Yx XML Tag, 76
Yy XML Tag, 76
Yz XML Tag, 76
Z

ZActuatorMin XML Tag, 77
ZActuatorStride XML Tag, 78
z-axis XML Tag, 79, 80
ZCalFactor parameter, 91
ZCalFactorCoeffs XML Tag, 74, 75
ZMode XML Tag, 66
Z-NumLayers XML Tag, 78
ZOffset XML Tag, 84, 85
Zx XML Tag, 76
Zy XML Tag, 76
Zz XML Tag, 76

.NET API format, 13 .NET C#, 15

Index

1040-0012 Revision Q 332

1 command. See Abort command
10 command. See GetKFactor command
14 command. See SetPerformanceGlobals

command
15 command. See ResetPerformanceGlobals

command
16 command. See OpenCOMPort command
17 command. See CloseCOMPort command
18 command. See COMWriteLine command
2 command. See TakeHostControl command
200 command. See ClearJobList command
203 command. See GetFlashJobFileList

command
204 command. See GetUSBJobFileList

command, See GetUSBJobFileList command,
See GetUSBJobFileList command

205 command. See LoadFlashJob command
206 command. See LoadUSBJob command
207 command. See ExecuteJobOnce command
208 command. See ExecuteJobContinuous

command
209 command. See GetJobStatus command
21 command. See MotfCalFactor command
211 command. See GetJobState command
212 command. See GetJobElapsedTime

command, See GetJobElapsedTime
command, See GetJobElapsedTime
command, See GetJobElapsedTime
command

27 command. See GetZKFactor command
28 command. See GetYKFactor command
29 command. See GetControllerTemp

command, See GetControllerTemp
command, See GetControllerTemp
command, See GetControllerTemp
command

3 command. See ReleaseHostControl
command

35 command. See GetDigitalPort command
4 command. See GetHostControlStatus

command
5 command. See GetHostInControl command
500 command. See SetAdminPIN command

501 command. See GetAdminPIN command
502 command. See SetDHCPMode command
503 command. See GetDHCPMode command
504 command. See SetLocalGateway

command
505 command. See GetLocalGateway

command
506 command. See SetLocalIP command
507 command. See GetLocalIP command
508 command. See SetNodeFriendlyName

command
509 command. See GetNodeFriendlyName

command
510 command. See SetSubnetMask command
511 command. See GetSubnetMask command
512 command. See SetUserPIN command
513 command. See GetUserPIN command
514 command. See SetCOMPortSpeed

command
515 command. See GetCOMPortSpeed

command
516 command. See SetCOMPortAssignments

command
517 command. See GetCOMPortAssignments

command
6 command. See EnableBroadcasting

command
7 command. See LoadHardwareDefaults

command
8 command. See HardwareReset command
9 command. See GetRemoteIP command
Abort command, 247
ActiveCorrectionTable parameter, 139
ActuatorMin XML Tag, 77
ActuatorUnits XML Tag, 72
Address XML Tag, 46
Admin XML Tag, 49
AliveChannel XML Tag, 45
An XML Tag, 75
Aperture XML Tag, 66
API formats, 13
APIPort XML Tag, 47
APIPortSpeed XML Tag, 47

Index

1040-0012 Revision Q 333

ApplicationEvent command, 135
ArcAbs command, 106
AVer XML Tag, 28
AxisDACConfig parameter, 145
BeginJob command, 135
Bits XML Tag, 58
BreakOK XML Tag, 47
BroadcastChannel XML Tag, 46
CalFlag XML Tag, 66
CalibrateRectangularField XML Tag, 71
ClearJobList command, 261
Client XML Tag, 47
CloseCOMPort command, 255
CmdRangeCheckMode parameter, 92
CmdRangeCheckMode XML Tag, 52
CO2 Laser Timing. See Laser Timing Control
COMWriteLine command, 256
Configuration XML Tag, 70, 72
ConnectIP XML Tag, 30
ConnectJob XML Tag, 30
ContrlTemp XML Tag, 33
ControlFile XML Tag, 44
Coordinate System Conventions, 278
Correction Table Support, 290
CorrFile1 XML Tag, 51
CorrFile2 XML Tag, 51
CorrFile3 XML Tag, 51
CorrFile4 XML Tag, 51
CurrentDIO XML Tag, 34
Data XML Tag, 28, 30, 32, 34, 44, 50, 57, 66,

69, 80, 81, 82, 83, 84, 85, 86
DataChannel XML Tag, 44
DebugPort XML Tag, 48
DebugPortSpeed XML Tag, 48
Delays, 281
DeleteAllSegments command, 201
DeleteSegment command, 201
Description XML Tag, 70
DesignErrorComponents XML Tag, 72, 73
DFMPort XML Tag, 48
DFMPortSpeed XML Tag, 48
DigitalIOPolarity XML Tag, 56
DisableSegment command, 202

Distortion
Composite Image Field Distortion, 290
Pillow Distortion, 289
Pincushion Distortion, 289
X-Y Mirror Induced Distortion, 288

DistortionFactor XML Tag, 73
Duty XML Tag, 59
Dx XML Tag, 76
Dy XML Tag, 76
Dz XML Tag, 76
e1e2Coeffs XML Tag, 75
E1E2Spacing XML Tag, 74
EnableBroadcasting command, 249
EnableParkPosition command, 107
EnableSegment command, 202
EnableStreamToFile XML Tag, 44
EndJob command, 136
EventChannel XML Tag, 45
ExecuteJobContinuous command, 264
ExecuteJobOnce command, 263
ExtPauseControl XML Tag, 55
ExtPwrCtrl XML Tag, 58
Fiber Laser Timing. See Laser Timing Control
FieldOffset parameter, 140
FieldOrientation parameter, 140
FixedFreq XML Tag, 58
FixedPW XML Tag, 58
FixedWatts XML Tag, 58
FocalLen XML Tag, 66
FPGAFirmVer XML Tag, 28
FreePermStorage XML Tag, 29
FreeTempStorage XML Tag, 29
FreeUSBStorage XML Tag, 29
Freq XML Tag, 59
FriendlyName XML Tag, 30, 46
GalvoCmdDelayComp command, 115
GalvoCmdMarker command, 136
GetAdminPIN command, 269
GetCOMPortAssignments command, 277
GetCOMPortSpeed command, 275
GetControllerTemp command, 258
GetDHCPMode command, 270
GetErrorCodeDescription method, 243

Index

1040-0012 Revision Q 334

GetFlashJobFileList command, 261
GetHostControlStatus command, 248
GetHostInControl command, 249
GetJobElapsedTime command, 265, 266, 267
GetJobState command, 265
GetJobStatus command, 264
GetKFactor command, 251
GetLocalGateway command, 271
GetLocalIP command, 272
GetNodeFriendlyName command, 272
getPriorityData method, 240
GetRemoteIP command, 251
GetSubnetMask command, 273
GetUSBJobFileList command, 261, 267, 268
GetUserPIN command, 274
GetYKFactor command, 257
GetZKFactor command, 257
HardwareReset command, 250
Head Transform parameter, 144
HeadParameters XML Tag, 73, 75
HeadSerialNumber XML Tag, 46
HeadType XML Tag, 70
HSN XML Tag, 30
InitPosition XML Tag, 55
InsGenMode XML Tag, 54
Installation location, 14
Interlock XML Tag, 33, 59
IntlockConfig XML Tag, 53
IP XML Tag, 29
IPAddress XML Tag, 49
IPGateway XML Tag, 49
IPMode XML Tag, 49
IPRetries XML Tag, 49
IPSubnet XML Tag, 49
IPTimeout XML Tag, 49
IPTryagain XML Tag, 49
ISRGenMode XML Tag, 55
Job parameters, 89
JobDataCntr command, 136
JobDataCntr XML Tag, 34
JobMarker command, 137
JobMarker XML Tag, 34
JobTimer command, 138

JumpAbs command, 107
JumpAbsEx command, 108
JumpAbsList command, 110
JumpAndFireList command, 113, 116
JumpDelay parameter, 92
JumpRelEx command, 112
JumpSpeed parameter, 93
JumpStepTime parameter, 94
Laser Marking Terms and Definitions, 280
Laser Timing Control, 291

CO2 Laser Timing, 298
Fiber Laser Timing, 310
Laser Timing Emulation, 297
Nd05C3:YAG Emulation Mode-3 Timing, 304
Nd05C3YAG Emulation Mode-1 Timing, 300
Nd05C3YAG Emulation Mode-2 Timing, 302
Nd05C3YAG Emulation Mode-4 Timing, 306
Nd05C3YAG Emulation Mode-5 Timing, 308

Laser Timing Emulation. See Laser Timing
Control

LaserEnable command, 130
LaserEnableDelay parameter, 123, 145
LaserEnableDelay XML Tag, 62
LaserEnableTimeout parameter, 124
LaserEnableTimeout XML Tag, 63
LaserFile XML Tag, 51
LaserFire command, 130
LaserFPK XML Tag, 63
LaserModDelay parameter, 124, 164
LaserModDelay XML Tag, 63
LaserModeConfig parameter, 146
LaserModeConfig XML Tag, 59
LaserModType parameter, 129
LaserOffDelay parameter, 125
LaserOn command, 130
LaserOnDelay parameter, 125
LaserPipelineDelay parameter, 126
LaserPipelineDelay XML Tag, 52
LaserPort XML Tag, 48
LaserPortSpeed XML Tag, 48
LaserPower XML Tag, 83, 85
LaserPowerDelay parameter, 127
LaserPowerDelay XML Tag, 63

Index

1040-0012 Revision Q 335

LaserPulse parameter, 127
LaserRegulation command, 171
LaserScribe command, 171
LaserSignalOff command, 131
LaserSignalOn command, 131
LaserStandby parameter, 125
LaserStandby XML Tag, 63
LaserTiming parameter, 128
LastError Code Descriptions, 317
LastError XML Tag, 29
Layer XML Tag, 79, 80
Lens XML Tag, 72
LensFile XML Tag, 51
LensFocalLength-mm XML Tag, 74
LensMaxMechHalfAngle-deg XML Tag, 74
LensName XML Tag, 66
LissajousWobble params, 100
LoadFlashJob command, 262
LoadHardwareDefaults command, 250
LoadUSBJob command, 262
LocalMode XML Tag, 46
LoggingLevel XML Tag, 49
LongDelay command, 138
LsrName XML Tag, 57
LsrType XML Tag, 58
MAC XML Tag, 29
MarkAbs command, 118
MarkAbsEx command, 119
MarkAbsList command, 120
MarkDelay parameter, 94
MarkRel command, 121
MarkRelEx command, 122
Marks and Jumps, 279
MarkSpeed parameter, 94, 95
MarkSpeed XML Tag, 84, 85
MarkStepTime parameter, 95
MicroStepMode XML Tag, 54
Micro-vectoring, 281
Mirrors XML Tag, 72
mmToActuatorSpaceTransform XML Tag, 75,

77
MotfCalFactor parameter, 165
MotfCalFactor XML Tag, 52

MotfCalGain XML Tag, 51
MotfCapable XML Tag, 51
MotfDelayComp parameter, 165
MotfDirection parameter, 166
MotfDirection XML Tag, 52
MotfEnable command, 169
MotfMode parameter, 166
MotfMode XML Tag, 52
MotfResetJump command, 170
MotfTriggerEvent parameter, 168
MotfTriggerEx parameter, 167
MotfWaitForTrigger command, 170
MotionPort XML Tag, 47
MotionPortSpeed XML Tag, 48
MSN XML Tag, 28
Nd05C3YAG Emulation Mode-1 Timing. See

Laser Timing Control
Nd05C3YAG Emulation Mode-2 Timing. See

Laser Timing Control
Nd05C3YAG Emulation Mode-3 Timing. See

Laser Timing Control
Nd05C3YAG Emulation Mode-4 Timing. See

Laser Timing Control
Nd05C3YAG Emulation Mode-5 Timing. See

Laser Timing Control
NetAssign XML Tag, 29
NetMask XML Tag, 29
ObjExtVer XML Tag, 28
Offset parameter, 141, 142
OnDataEvent method, 229
OnMessageEvent Message Types, 223
OpenCOMPort command, 254
Pendant XML Tag, 47
PendantPort XML Tag, 47
PendantPortSpeed XML Tag, 47
PerformanceFile XML Tag, 51
Period XML Tag, 83, 85
PermStoragePath XML Tag, 29
PincushionFactor XML Tag, 73
PixelMap command, 157, 163
PolyDelay parameter, 96
Port XML Tag, 30, 44, 45, 46

Index

1040-0012 Revision Q 336

Predefined Application Message Event Codes,
224

PreserveCalFactors XML Tag, 71
PriorityChannel XML Tag, 45
Pulse XML Tag, 58
PulseWidth XML Tag, 83, 85
PVer XML Tag, 28
RasterLine command, 158
RasterMode command, 157, 163
RasterParams command, 157, 163
ReferenceInformation XML Tag, 69, 70
RefSurfaceToWorkSurfaceDist-mm XML Tag,

74
ReleaseHostControl command, 248
ResetPerformanceGlobals command, 253
Retransmit XML Tag, 46
Revision history, 6
Rotation XML Tag, 82
RTCCompatibility parameter, 143
RTCCompatibility XML Tag, 55
RunSegment command, 200
ScanScript embedded scripting language, 13
Segment command, 199
sendJobData method, 215
sendPriorityData method, 230
sendStreamData method (overload 1), 189,

191, 193, 195, 196
Sequence command, 200
ServoConfig parameter, 149
Set command, 138
SetAdminPIN command, 268
SetCOMPortAssignments command, 276
SetCOMPortSpeed command, 275
SetDHCPMode command, 269
SetLocalGateway command, 270
SetLocalIP command, 271
SetMotfEncoderRate command, 257
SetNodeFriendlyName command, 272
SetSubnetMask command, 273
SettleCheckMode parameter, 185, 187
SetUserPIN command, 274
SMC Hardware Reference Manual, 5
SourceLensID XML Tag, 70

SourceScanHeadID XML Tag, 70
SourceSpacerID XML Tag, 70
StartupJob XML Tag, 55
StateCode XML Tag, 28
StreamFile XML Tag, 45
SupplementalLayers XML Tag, 79, 80
TableCreationDate XML Tag, 70
TableDataHasBeenCorrectedFromDesign XML

Tag, 71
TableParams XML Tag, 69, 78
TableRevision XML Tag, 70
TableStructure XML Tag, 77, 78
TakeHostControl command, 248
Tbl1Rotation XML Tag, 67
Tbl1XGain XML Tag, 67
Tbl1XOff XML Tag, 67
Tbl1YGain XML Tag, 67
Tbl1YOff XML Tag, 67
Tbl2Rotation XML Tag, 68
Tbl2XGain XML Tag, 68
Tbl2XOff XML Tag, 67
Tbl2YGain XML Tag, 68
Tbl2YOff XML Tag, 67
Tbl3Rotation XML Tag, 68
Tbl3XGain XML Tag, 68
Tbl3XOff XML Tag, 68
Tbl3YGain XML Tag, 68
Tbl3YOff XML Tag, 68
Tbl4Rotation XML Tag, 68
Tbl4XGain XML Tag, 68
Tbl4XOff XML Tag, 68
Tbl4YGain XML Tag, 68
Tbl4YOff XML Tag, 68
ThirdAxisPresent XML Tag, 71
Transform parameter, 142
TransformEnable parameter, 143
Units parameter, 90
UseExtPwrCtrl XML Tag, 58
User XML Tag, 48
UserFile XML Tag, 51
UserVar1 XML Tag, 81
UserVar2 XML Tag, 81
UserVar3 XML Tag, 81

Index

1040-0012 Revision Q 337

UserVar4 XML Tag, 81
UserVar5 XML Tag, 81
UserVar6 XML Tag, 81
UsingFile command, 202
VariJumpDelay parameter, 96
VariPolyDelayFlag parameter, 96
VelocityComp command, 183
VisPtr XML Tag, 58
Volts XML Tag, 59
WaitForIO command, 132
Watts XML Tag, 59
WattsUnits XML Tag, 58
Win32 DLL API format, 13
Wobble mode, 98
Wobble parameter, 97
Wobble table, 99
WobbleEnable command, 101
WriteAnalog command, 133
WriteDigital command, 133
XActPos XML Tag, 32
XActuatorStride XML Tag, 77
x-axis XML Tag, 78, 79
XGain XML Tag, 82
XGalvoMechHalfAngle-deg XML Tag, 73
XMirrorToObjectiveDist-mm XML Tag, 74
XML in the API, 20
XML Tags

Administration Configuration, 44
Broadcasted Status Information, 32
Broadcasted System Information, 28
Controller Configuration, 50
Correction Table, 69, 78, 81, 82
Laser Configuration, 57, 59
Lens Configuration, 66, 67
Performance Adjustments Table, 83, 85

X-NumCols XML Tag, 77
XOff XML Tag, 82
XOffset XML Tag, 84, 85
XPos XML Tag, 32
XPosAck XML Tag, 32
XPower XML Tag, 33

XStatus XML Tag, 33
XTemp XML Tag, 32
XtoYMirrorDist-mm XML Tag, 73
Xx XML Tag, 75
Xy XML Tag, 76
XY2AddressingMode XML Tag, 54
XY2AxisDisable parameter, 104, 105, 106
XY2ErrorCheckMode parameter, 101, 103
XY2FrameRate XML Tag, 54
XY2StatusTiming XML Tag, 54
XYCalFactor parameter, 90
Xz XML Tag, 76
YActPos XML Tag, 32
YActuatorMin XML Tag, 77
YActuatorStride XML Tag, 77
y-axis XML Tag, 79, 80
YGain XML Tag, 82
YGalvoMechHalfAngle-deg XML Tag, 73
YMirrorToRefSurfaceDist-mm XML Tag, 73
Y-NumRows XML Tag, 77
YOff XML Tag, 82
YOffset XML Tag, 84, 85
YPos XML Tag, 32
YPosAck XML Tag, 32
YPower XML Tag, 33
YStatus XML Tag, 33
YTemp XML Tag, 33
Yx XML Tag, 76
Yy XML Tag, 76
Yz XML Tag, 76
ZActuatorMin XML Tag, 77
ZActuatorStride XML Tag, 78
z-axis XML Tag, 79, 80
ZCalFactor parameter, 91
ZCalFactorCoeffs XML Tag, 74, 75
ZMode XML Tag, 66
Z-NumLayers XML Tag, 78
ZOffset XML Tag, 84, 85
Zx XML Tag, 76
Zy XML Tag, 76
Zz XML Tag, 76

1040-0012 Revision Q 338

This page is left blank intentionally

Engineered by Cambridge Technology, part of Novanta

Novanta Headquarters, Bedford, USA

Phone: +1-781-266-5700

Email: photonics@novanta.com

Website: www.novantaphotonics.com

1040-0012 Revision Q

March 2024

© 2023, Novanta Corporation. All rights reserved.

mailto:photonics@novanta.com
www.novantaphotonics.com

	Table of Contents
	1.1 Safety Symbols 1
	1.2 Safety Labels 2
	1.3 General Safety Guidelines 2
	1.4 Customer Support 3
	2.1 General Notes 5
	2.2 Using This Manual 5
	2.3 Warranty Information 10
	3.1 System Description 11
	3.2 Feature Overview 12
	3.3 Application Programming Interface 13
	4.1 The Use of XML in the API 20
	5.1 Establishing a Connection 22
	5.2 Retrieving Broadcast Data 24
	5.3 Broadcast Data Definitions 27
	6.1 Access to SMC Modules 36
	6.2 Configuration Data Management 38
	6.3 Configuration Data Definitions 43
	6.4 Marking Job Specification 87
	6.5 Job Parameters and Commands 90
	6.6 Structured Job Orgnization 201
	6.7 Marking Job Control and Administration 210
	6.8 Asynchronous Communication 224
	6.9 Priority Communication 233
	6.10 API Error Codes 247
	7.1 TCP/IP Interface 248
	7.2 RS232 Interface 249
	7.3 Protocol Specification 249
	7.4 Remote Control Return Codes 281
	8.1 Scanning Job Fundamentals 282
	8.2 Image Field Correction 291
	8.3 Laser Timing Control 295
	8.4 Software Control of Laser Timing 298
	9.1 XML API Error Codes 317
	9.2 Remote Control Error Codes 319
	9.3 LastError Code Descriptions 321

	List of Tables
	1 Important Information
	1.1 Safety Symbols
	1.2 Safety Labels
	1.3 General Safety Guidelines
	1.4 Customer Support
	Americas, Asia Pacific
	Europe, Middle East, Africa
	China
	Japan

	2 Introduction
	2.1 General Notes
	2.2 Using This Manual
	2.2.1 Purpose
	2.2.2 Revision History

	2.3 Warranty Information

	3 SMC Product introduction
	3.1 System Description
	3.2 Feature Overview
	3.2.1 Hardware Features
	3.2.2 Software Features

	3.3 Application Programming Interface
	3.3.1 Installation Location
	3.3.2 API Structure
	3.3.3 Win32 C++ Interfaces

	4 Software Overview
	4.1 The Use of XML in the API

	5 Broadcast API
	5.1 Establishing a Connection
	5.1.1 clientAttachBroadcast
	5.1.2 clientDetachBroadcast

	5.2 Retrieving Broadcast Data
	5.2.1 getServerCount
	5.2.2 getServerList
	5.2.3 getBroadcastData

	5.3 Broadcast Data Definitions
	5.3.1 Broadcasted System Information
	5.3.2 Broadcasted Status Information

	6 Session API
	6.1 Access to SMC Modules
	6.1.1 loginSession
	6.1.2 logoutSession

	6.2 Configuration Data Management
	6.2.1 getFixedDataList
	6.2.2 requestFixedData
	6.2.3 sendFixedData

	6.3 Configuration Data Definitions
	6.3.1 Administration Configuration
	6.3.2 Controller Configuration
	Controller Configuration Data

	6.3.3 Laser Configuration
	Laser Configuration Data: Header and Host Application Initialization Settings
	Laser Configuration File: Hardware Initialization Settings

	6.3.4 Lens Configuration
	Lens Configuration Data: Header and Host Application Initialization Settings
	Lens Configuration Data: Hardware Initialization Settings

	6.3.5 Correction Tables
	Correction Table Parametric Information
	Correction Table Hardware Initialization Settings

	6.3.6 User Configuration
	User Configuration Data: Header and Host Application Initialization
	User Configuration Data: Hardware Initialization Settings

	6.3.7 Performance Adjustments
	Performance Adjustments Data Header
	Performance Adjustments Data: Hardware Initialization Settings

	6.3.8 Servo Configuration
	Servo Config Data

	6.4 Marking Job Specification
	6.4.1 Job Data Types
	6.4.2 Job Data Definition
	6.4.3 Job Type Specification

	6.5 Job Parameters and Commands
	6.5.1 User Units Conversion
	6.5.2 Motion Control Parameters
	6.5.3 Motion Control Commands
	Binary interface for JumpAndDrillList data
	Binary interface for JumpAndFireList data

	6.5.4 Laser Control Parameters
	6.5.5 Laser Control Commands
	6.5.6 External I/O Commands
	6.5.7 Utility Commands
	6.5.8 Coordinate System Transform Parameters
	6.5.9 Hardware Interface Configuration Parameters
	6.5.10 Bit-map Raster Support
	Mode 0: Variable Pulse Width "Fire-on-the-fly"
	Mode 1: Variable Power “Fire-on-the-fly”
	Standard Jump-and-fire Raster Mode
	Synchronous Fiber Laser Jump-and-Fire Raster Mode

	6.5.11 Bit-map Raster Commands
	Bit-Map Raster Parameters and Commands

	6.5.12 Polygon Bit-map Raster Commands
	6.5.13 Mark-on-the-fly Support
	Mark-on-the-fly Parameters
	Mark-on-the-fly Commands
	SMC MOTF for fixed relative spacing of multiple fields (wire marking)
	SMC MOTF for multi-field imaging using 32-bit virtual addressing

	6.5.14 Velocity Controlled Laser Modulation
	Mode 1 – Duty-cycle
	Mode 2 – Frequency
	Mode 3 – Laser Power
	Velocity Controlled Laser Modulation Compensation

	6.5.15 Via-hole Drilling Support
	Closed-loop operation
	Open-loop operation

	6.6 Structured Job Orgnization
	6.6.1 Segment Construct
	6.6.2 Structured Job Sequencing
	Sequence Commands

	6.6.3 Structured Job Example

	6.7 Marking Job Control and Administration
	6.7.1 sendStreamData (overload 1)
	6.7.2 sendStreamData (overload 2)
	6.7.3 sendCorrectionData (overload 1)
	6.7.4 sendCorrectionData (overload 2)
	6.7.5 sendCorrectionData (overload 3)
	6.7.6 saveJobData
	6.7.7 sendJobData
	6.7.8 copyJobData
	6.7.9 manageJobData
	6.7.10 requestJobNameList
	6.7.11 copyUserDataFile
	6.7.12 manageUserDataFile
	6.7.13 requestUserDataFileList

	6.8 Asynchronous Communication
	6.8.1 OnConnectEvent
	6.8.2 OnMessageEvent
	6.8.3 OnDataEvent

	6.9 Priority Communication
	6.9.1 sendPriorityData
	6.9.2 Priority Messages
	6.9.3 getPriorityData
	6.9.4 GetRegisters Priority Message OnDataEvent Response
	6.9.5 GetCalFactors Priority Message OnDataEvent Response

	6.10 API Error Codes

	7 Remote Control API
	7.1 TCP/IP Interface
	7.2 RS232 Interface
	7.3 Protocol Specification
	7.3.1 Control and Communications Commands
	7.3.2 Job Execution Control
	7.3.3 System Administration Commands

	7.4 Remote Control Return Codes

	8 Appendix A - Theory of Operation
	8.1 Scanning Job Fundamentals
	8.1.1 Coordinate System Conventions
	8.1.2 Marks and Jumps
	8.1.3 Laser Marking Terms and Definitions
	8.1.4 Micro-Vectoring
	8.1.5 Delays

	8.2 Image Field Correction
	8.2.1 X-Y Mirror Induced Distortion
	8.2.2 F-theta Objective Induced Distortion
	8.2.3 Composite Distortion and Correction Methodology
	8.2.4 Multiple Correction Table Support

	8.3 Laser Timing Control
	8.4 Software Control of Laser Timing
	8.4.1 Laser Timing Emulation
	CO2 Laser Timing
	Nd:YAG Emulation Mode-1 Timing
	Nd:YAG Emulation Mode-2 Timing
	Nd:YAG Emulation Mode-3 Timing
	Nd:YAG Emulation Mode-4 Timing
	Nd:YAG Emulation Mode-5 Timing
	Fiber Laser Timing

	9 Appendix B - Error Codes
	9.1 XML API Error Codes
	9.2 Remote Control Error Codes
	9.3 LastError Code Descriptions

	10 Index

