

# Large Area High Accuracy Thin Film Patterning with LIGHTNING<sup>™</sup> II 30mm 3-Axis Scan Heads

# 1 Introduction

Laser ablation has been widely used for patterning the thin film to either create smallfeatures or generate isolated areas on the part. Laser ablation is using a short-pulsedlaser (usually nanosecond) which is focused on the surface to vaporize the thin film without damaging the substrate. The applications of laser thin film patterning includeITO patterning for flat panel displays, metal film patterning for flexible circuits, and production of photovoltaic cells (CIGS, amorphous silicon).

Traditional laser thin film patterning uses a fixed laser beam with XY stages, which is usually moving at a speed of <0.5m/s. Today the advancement of laser technology provides the laser with higher power and higher frequency; process throughput of thin film patterning can be significantly improved when using a scanner to steer the beam on the target at a speed of 1-5m/s without moving the XY stages. The scanner also providesflexibility to create complex patterns on the film.

One disadvantage of using a 2-axis scanner for thin film patterning is its limited scan area. With f=160mm F-theta, which is mostly used today, the scanning field size is up to120mm (4.7in) square. This will not be able to process inside one scan field for today's tablet or laptop flat panel screen with diagonal size  $\geq$ 7in. One method to address this issue is to use the XY stage with the scanner, using either a "step-and-shoot" stitching mode or synchronized motion without stitching to achieve large area processing.

This application note presents the use of a Cambridge Technology 3-axis scanning system to perform large field ITO patterning. The scan area is set to 400mm square, and a performance study is carried out on the area of 300mm square.



# 2 Setup

Laser: IPG YLP-20 fiber laser with wavelength 1.06 $\mu$ m (20-100KHz)

Scan Head: LIGHTNING<sup>™</sup> II 30mm 3-axis scan head (tracking delay = 0.13ms)

Controller: SM1000 with 20-bit command

Software: SMD1.4.1 Field

size: 400x400mm

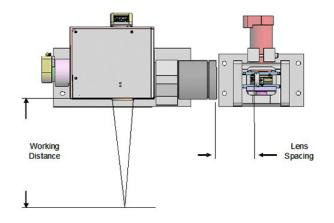



Figure 1 - Setup



# 3 Test Description

- Application is laser patterning ITO on PET substrate.
- The line pitch is 70µm on target. Field size is 300x300mm.
- Patterning speeds are 1, 2, 3 and 5m/s. Jump speed = 5m/s.
- Poly delay = 0

The test pattern is shown below in Figure 2.

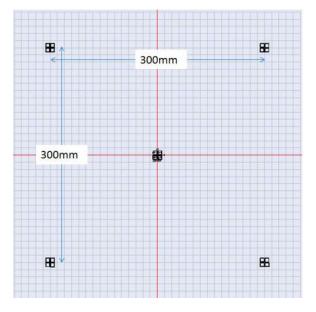



Figure 2 - Field Size

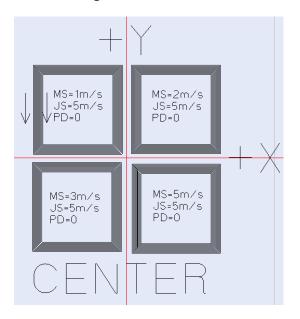



Figure 3 - Test Pattern



There are a total of 4 test items:

- 1. Uni-directional patterning:
  - a. **Corner deviation**: determine the deviation from ideal corner location atdifferent speeds
  - b. Corner deviation variation: determine the corner deviation variation
  - c. Line straightness: determine the straightness of patterning lines
- 2. **Bi-directional patterning** on item 1(a), 1(b) and 1(c) mentioned above
- 3. Line width consistency on edge of scanning field: compare results at fourcorners (TL, TR, BL, BR) with results at center of scanning field
- 4. 16-bit vs 20-bit large field patterning

# 4 Test Results

## 4.1 Uni-directional patterning

Job parameters: Mark Speed = 1, 2, 3, 5m/s, Jump Speed = 5m/s, Poly Delay = 0See marking results from Figure 4 to Figure 9.

| 320.2011                                 | 040.1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00.7                                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26.7um                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a the second second                      | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.1um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · · · ·                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and the spinister                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.1um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The second second                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | 25.5um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second se |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69.8um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ** 、圖圖習習品                                | 1 January                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 日本日間日日                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.5um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.7um <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _36.1                                    | um or c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _00.1                                    | um _34.5um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _35.3um                                  | _33.7um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2-30 3axis, CENTER, Uni-direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · · · · · · · · · · · · · · · · · · ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | 70.6um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS=1m/s, JS=5m/s, PD=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200Micrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Figure 4 - Mark Speed = 1m/s





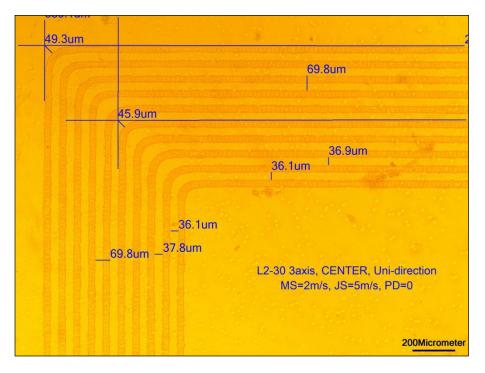



Figure 5 - Mark Speed = 2m/s

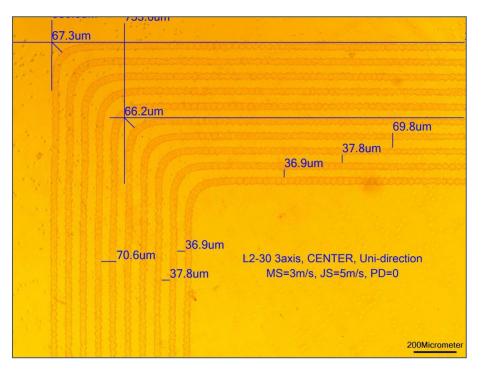



Figure 6 - Mark Speed = 3m/s





|      | 1 1 d - 1  |                                         | and the second |
|------|------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|
|      | 105.7um    |                                         |                                                                                                                  |
| 1    | 1.00000    | 000000000000000                         | 000000000000000000000000000000000000000                                                                          |
|      | 1.3 1000   | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000                                                                          |
| 1.14 | 8.61.100   | 000000000000                            | 000000000000000000000000000000000000000                                                                          |
| 1.1  | 88 1 4     | G0000000000000                          | 000000000000000000000000000000000000000                                                                          |
|      | 0 2 8 . 8_ | 124.2um                                 | 000000000000000000000000000000000000000                                                                          |
|      | 2088       |                                         | 69.8um                                                                                                           |
| 1    | 62689      | 3 1000000000                            | 35.3um                                                                                                           |
| 1    |            | 8 1 pour                                | 35.3um                                                                                                           |
|      |            | 28 / pour                               |                                                                                                                  |
|      |            | 588 8 B D                               |                                                                                                                  |
|      |            | 20028                                   |                                                                                                                  |
|      |            |                                         |                                                                                                                  |
|      |            |                                         |                                                                                                                  |
| 200  |            | 6 9 0 6_35.3um                          | L2-30 3axis, CENTER, Uni-direction                                                                               |
|      |            | 69.8um                                  | MS=5m/s, JS=5m/s, PD=0                                                                                           |
|      |            | 00000                                   |                                                                                                                  |
|      |            |                                         |                                                                                                                  |
|      |            |                                         |                                                                                                                  |
|      |            |                                         |                                                                                                                  |
|      |            |                                         | 200Micrometer                                                                                                    |

Figure 7 - Mark Speed = 5m/s

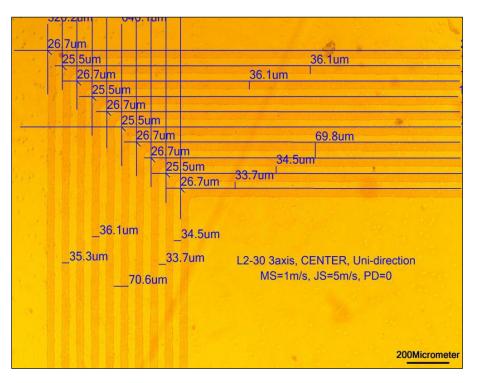



Figure 8 - Corner Deviation at Mark Speed = 1m/s



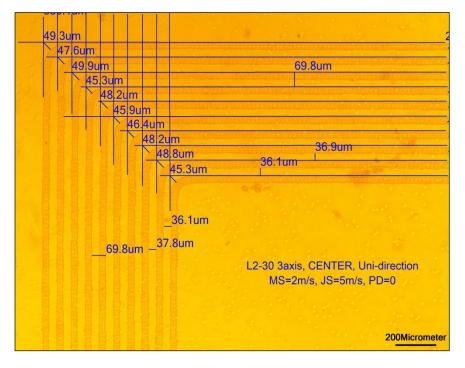



Figure 9 - Corner Deviation at Mark Speed = 2m/s

#### Short summary:

- Line width is able to stay <40µm for all speeds.
- Line space variation is <±1.5µm.
- Lines are very straight without obvious waviness.
- Corner deviation from ideal sharp corner at 1m/s is ~25µm, and <50µm for 2m/s.
- Corner deviation variation is small too, <2µm for 1m/s and <4µm for 2m/s.



## 4.2 Bi-directional patterning

Job parameters:

Mark Speed = 1, 2, 3, 5m/s, Jump Speed = 5m/s, Poly Delay (PD) = 0µsSee

marking results from Figure 10 to Figure 13.



Figure 10 - Mark Speed = 1m/s



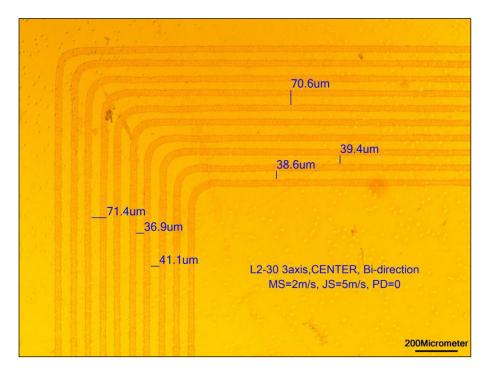



Figure 11 - Mark Speed = 2m/s

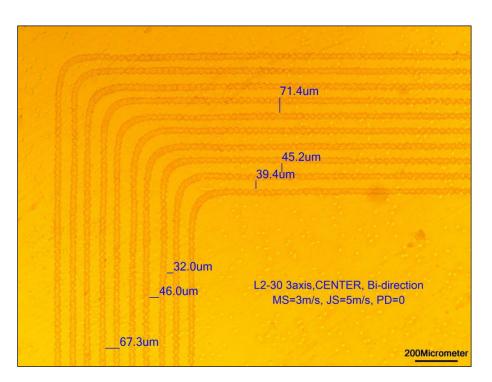



Figure 12 - Mark Speed = 3m/s



| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000                    |
|-----------------------------------------|------------------------------------------------------------|
|                                         | 69.0um                                                     |
|                                         | 49.3um                                                     |
|                                         | 32.8um                                                     |
|                                         |                                                            |
| _26.3um                                 | L2-30 3axis,CENTER, Bi-direction<br>MS=5m/s, JS=5m/s, PD=0 |
| 52.5um                                  |                                                            |
| 72.2um                                  | 200Micrometer                                              |

Figure 13 - Mark Speed = 5m/s

**Short summary:** Line spacing of bi-directional patterning shows 5-20µm variation from1m/s to 5m/s, worse than unidirectional patterning.



## 4.3 Line width consistency across the 300x300mm field

Job parameters: Mark Speed = 1m/s, Poly Delay (PD) =  $0\mu s$ Job pattern is as below, also shown previously in Figure 2.

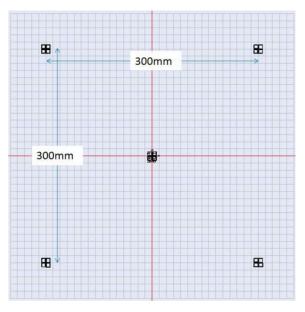



Figure 14 - Field Size

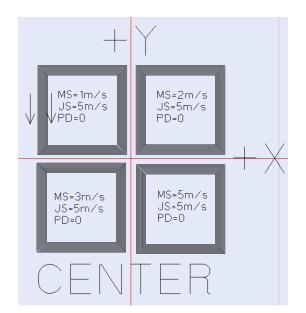



Figure 15 - Test Pattern

See marking results from Figure 16 to Figure 20.



| 520.20m  |                       |                                            |
|----------|-----------------------|--------------------------------------------|
| 26.7um   |                       | 4                                          |
|          |                       | 36.1um                                     |
| 1 Cinin  |                       | 36.1um                                     |
| 13 1 8 1 |                       |                                            |
|          | 25.5um                |                                            |
|          | 20.0011               | 69.8um                                     |
|          | A Cartal Carta        |                                            |
|          |                       | 34.5um <sup>l</sup><br>33.7um <sup>l</sup> |
|          |                       |                                            |
|          |                       |                                            |
| _36.     | 1um or c              |                                            |
|          | <sup>1um</sup> 34.5um |                                            |
| _35.3um  | _33.7um               | L2-30 3axis, CENTER, Uni-direction         |
|          | 70.6um                | MS=1m/s, JS=5m/s, PD=0                     |
|          |                       |                                            |
|          |                       |                                            |
|          |                       |                                            |
|          |                       | 200Micrometer                              |
|          |                       |                                            |

Figure 16 - Marking Result in the Center

|                    | A111                                                              |
|--------------------|-------------------------------------------------------------------|
|                    | 36.1um                                                            |
|                    | 36.1um                                                            |
|                    | 70.6um                                                            |
| 69.8um             |                                                                   |
| _36.1um<br>_35.3um |                                                                   |
|                    | L2-30 3axis, Bottom LEFT, Uni-direction<br>MS=1m/s, JS=5m/s, PD=0 |
|                    | 200Micrometer                                                     |

Figure 17 - Marking Result at the Bottom Left



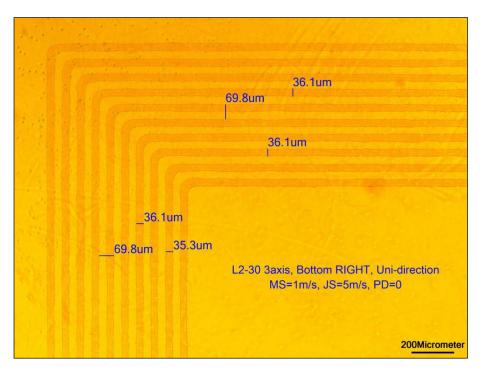



Figure 18 - Marking Result at the Bottom Right

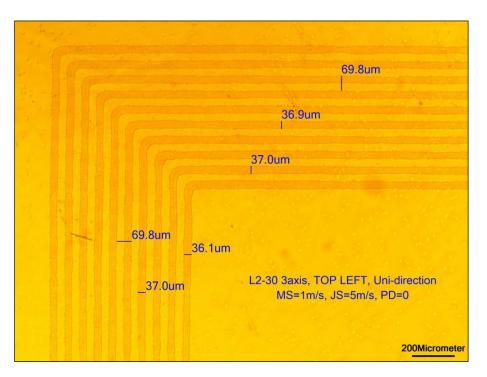



Figure 19 - Marking Result at the Top Left



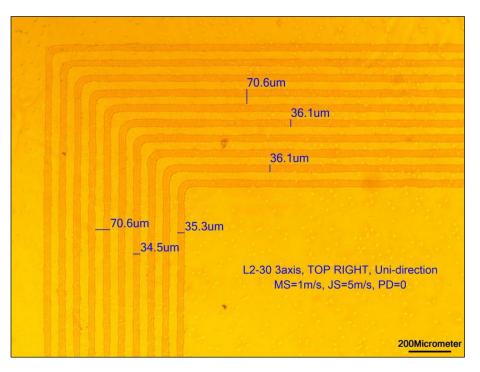



Figure 20 - Marking Result at the Top Right

**Short summary:** Line width at the corners of the field shows ≤2µm variation comparedto center of field, much less than the theoretically expected variations due to oblique incident angles. This could be due to two factors:

- 1. Beam shape distortion at edge of field due to non-normal incident angle decreasesenergy density and results in narrower marked lines on the substrate than the theoretical line width.
- 2. Field flattening calibration



## 4.4 16-bit vs 20-bit in large field patterning

The angular scanning range of the LII-30 3-axis system is  $\pm 11$ deg-mechanical or 0.384radmechanical or 0.768rad-optical. For a 16-bit controller, the command resolution is 12µrad optical or 5.5µm on target with 445mm working distance. For a 20-bit controller, the resolution is 0.73µrad optical or 0.33µm on target with 445mm working distance.

Line-to-line pitch is set to 70 $\mu$ m and the space between lines is only <35 $\mu$ m. With 16-bitresolution, line position will show ±6 $\mu$ m variation due to the command resolution of the controller, resulting uneven line spacing as shown below in Figure 21.

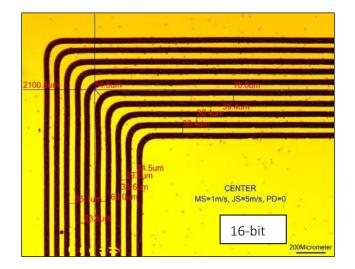



Figure 21 - Marking Result with a 16-bit Controller

But with 20-bit resolution, line spacing is uniform as shown below in Figure 22.

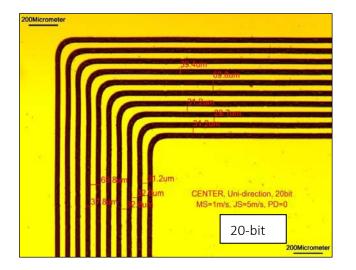



Figure 22 - Marking Result with a 20-bit Controller



Note at the time this test was done, Cambridge Technology had not developed the 24-bitcontroller ScanMaster Controller yet. So only marking comparison between 16-bit and 20-bit was performed. With the new ScanMaster Controller 24-bit command resolution, line spacing uniformity is even better.

# 5 Conclusion

The LIGHTNING II 30mm 3-axis scan head is able to achieve large field size and small spotsize at the same time, as well as excellent accuracy, speed, and repeatability. The LIGHTNING II scan head also has extremely low thermal drift. All these together make theLIGHTNING II scan head a perfect candidate for large area thin film patterning applications. The 3-axis scan head can be easily reconfigured to have different field sizes(200-1200mm) to meet various process requirements.

In addition, Cambridge Technology controllers with 20-bit and even 24-bit resolution help resolve small features at large field sizes and help maintain even line spacing acrossthe field.